
15/02/2026 01:51 1/3 Python decoradores

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Python decoradores

/via: https://medium.com/@LuisMBaezCo/decoradores-con-clases-y-funciones-en-python-2fafb22dba43

https://codigofacilito.com/articulos/decoradores-python

Decorador mediante una función

def decorator(func):
 print("Decorator")
 return func

@decorator
def Hello():
 print("Hello World")

Hello()
[Output]:
Decorator
Hello World

Decorador mediante dos funciones

#print_args: Función decoradora
def printArgs(func):
 def innerFunc(*args, **kwargs):
 print(args)
 print(kwargs)
 return func(*args, **kwargs)

 return innerFunc

#foobar: Función decorada
@printArgs
def foobar(x, y, z):
 return x * y + z

print(foobar(3, 5, z=10))
(3, 5)
{'z': 10}
25 = 3 * 5 + 10

Decorador simple mediante Clases

(se puede crear una funcion estática @staticmethod en una clase e invocarla de esa manera)

class Decorator(object):
 """Clase de decorador simple."""
 def __init__(self, func):

https://medium.com/@LuisMBaezCo/decoradores-con-clases-y-funciones-en-python-2fafb22dba43
https://codigofacilito.com/articulos/decoradores-python

Last update:
12/09/2024 03:54 development:python:decorators https://miguelangel.torresegea.es/wiki/development:python:decorators?rev=1726138480

https://miguelangel.torresegea.es/wiki/ Printed on 15/02/2026 01:51

 self.func = func

 def __call__(self, *args, **kwargs):
 print('Antes de ser llamada la función.')
 retorno = self.func(*args, **kwargs)
 print('Despues de ser llamada la función.')
 print(retorno)
 return retorno

@Decorator
def function():
 print('Dentro de la función.')
 return "Retorno"

function()
Antes de ser llamada la función.
Dentro de la función.
Despues de ser llamada la función.
'Retorno'

import types
print(isinstance(function, types.FunctionType))
False
print(type(function))
<class '__main__.Decorator'>

Decorando métodos de una clase

from types import MethodType

class Decorator(object):

 def __init__(self, func):
 self.func = func

 def __call__(self, *args, **kwargs):
 print('Dentro del Decorador.')
 return self.func(*args, **kwargs)

 def __get__(self, instance, cls):
 # Retorna un método si se llama en una instancia
 return self if instance is None else MethodType(self, instance)

class Test(object):
 @Decorator
 def __init__(self):
 print("Dentro de la función decorada")

a = Test()
Dentro del Decorador.
Dentro de la función decorada

15/02/2026 01:51 3/3 Python decoradores

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Decorador con parámetros mediante clases

class MyDec(object):
 def __init__(self, flag):
 self.flag = flag

 def __call__(self, original_func):
 decorator_self = self
 def wrappee(*args, **kwargs):
 print('en decorador antes de wrapee ', decorator_self.flag)
 original_func(*args,**kwargs)
 print('en decorador despues de wrapee', decorator_self.flag)
 return wrappee

@MyDec(flag='foo de fa fa')
def bar(a,b,c):
 print('En bar(...) : ',a,b,c)

if __name__ == "__main__":
 bar(1, "Hola", True)

#Out:
en decorador antes de wrapee foo de fa fa
en bar 1 Hola True
en decorador despues de wrapee foo de fa fa

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/development:python:decorators?rev=1726138480

Last update: 12/09/2024 03:54

https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/development:python:decorators?rev=1726138480

	Python decoradores
	Decorador mediante una función
	Decorador mediante dos funciones
	Decorador simple mediante Clases
	Decorando métodos de una clase
	Decorador con parámetros mediante clases

