14/02/2026 14:56 1/4 think python

think python

cadenas

<string>.capitalize()
<string>.isupper()
list(cadena) : separa en caracteres
<string>.split() : separa en palabras
o se puede pasar por parametro el delimitador
<delimitador>.join(<lista>): junta los elementos de la lista, poniendo en medio el delimitador (!!)

por referencia (aliasing, mas de una referencia al mismo objeto)

0JO al usar funciones o0 métodos al trabajar con listas, (referencia VS new lista) : pagina 96

empty = [], cadenas = ['uno', 'dos', 'tres', 'cuatro', 'cinco'], numeros = [1,2,3],
mixta = ['uno',2,['tres',3], 'cuatro']

mutables : cadenas[1] = 'DOS'
buguedas: 'tres' in cadenas - true
recorridos:

o for 1 in numeros:
o for i in range(len(mixta)):
concatenacién: otra_mixta = cadenas + numeros - ['uno','dos','tres','cuatro','cinco’,1,2,31]
multiplicativo: numeros * 2 -[1,2,3,1,2,3]
slices:
o de los indices pasados, incluye el primero, excluye el segundo.
o cadenas[1l:] - ['dos','tres','cuatro’,'cinco']
cadenas[:1] - ['uno','dos']
cadenas[2:4] - ['tres','cuatro']
asignacion:
= cadenas[2:3]=['aaa', 'bbb'] - ['uno','aaa’,'bbb’,'cuatro’,'cinco']

o

[¢]

[¢]

métodos:

o <list>.append() : aflade elemento al final

o <list>.extend(<list>) : afiade al final de la lista otra lista, cambia la primera.

o <list>.sort() : ordena

o <list>.pop(#elemento) : extrae elemento de la lista (lo devuelve) en funcién del indice del
mismo

» del <list>[#elemento] : borra sin devolverlo en funcién del indice del mismo. permite

slices

= <list>.remove(elemento) : borra el elemento si sabemos cual es

print list('cadena') :['c','a','d",'e','n',"a']

o

diccionarios

pareja clave-valor

no mantiene el orden de entrada dentro del diccionario
empty = dict()

diccio = {}

asignacion: diccio[<clave>] = 'valor'

len: len(<diccionario>)

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last update:
05/06/2019 development:python:thinkpython https://miguelangel.torresegea.es/wiki/development:python:thinkpython?rev=1559750545

09:02

¢ get : recupera un valor de una clave y permite establecer un valor por defecto (si no existe la clave)

o <diccionario>.get('<clave>',6<default>)

¢ keys : devuelve como lista las keys de un diccionario

in:

[¢]

busca en las claves, devuelve cierto/falso —» '<clave>' in diccio

con el uso de <diccionario>.values() se pueden hacer busguedas en los valores
busqueda por hashtable

o not in

o

[¢]

¢ INVERSE pagina 127 -» inverse[val] = [key] ????

Tuplas

13

secuencia de valores, separados por coma, inmutables
tup'La= IaIlIbI’ICI'IdI

tup'La= (Ial’lbl’lcl’ldl)

tupla = 'a', « nétese la coma final

o type(tupla)
tupla = tuple('cadena')
o print tupa-('c''a')'d"'e','n','a")
acceso a elementos:
o tuplal0]
o tupla[1l:3] « primero inclusive, Ultimo no
no se puede reasignar un valor a través del indice, por su caracter inmutable, pero si:
o tuplaNueva = ('C',) + tupla[l:]-('C.a''d",'e', 'n''a")
usando tuplas:
o para intercambiar valores: a,b = b,a
o separar una cadena: add="'nombre@dominio.com - nombre,dominio = addr.split('@')
en funciones:
o pardmetros variables a una funcién (gathers): def printall(*args):
o pasar paramtros a través de tuplas, cuando la funcién espera los valores por separado: t =
(7,3) ; divmod(*t) « sin * da error
zip: combina dos tuplas, generando una lista de tuplas con un elemento de cada (hasta la mas corta)
os = 'abc';t = [0,1,2];mizip = zip(s,t) = [('a', 0), ('b", 1), ('c', 2)]
o for letra,numero in mizip:print numero, letra
enumerate: for indice,elemento in enumerate('abc'):
diccionarios:
o uso de items () para pasar el diccionario a tuplas
o uso de dict() para pasar una lista de tuplas a diccionario
en combinacién: d = dict(zip('abc',range(3))) - {'a:0,'c: 2, 'b": 1}
es de uso comun usar tuplas como indices de diccionarios
se pueden usar operadores ldgicos de comparacién con tuplas, se van comparando elemento a elemento
hasta que satisface la operacién
sort se usa de una manera similar (ejemplo SORT en pagina 119)

ficheros

escritura fichero

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 14:56



14/02/2026 14:56 3/4 think python

e escritura: fout = open('fichero.txt','w') ; fout.write('una linea') ; fout.close()
o fout requiere string

= str()
= format operator % - palabras=5; fout.write('Una cadena de %d palabras' %
palabras)
¢ si hay mas de 1 variables, ha de ser una tupla:'La cadena %s %d palabras' %
('tiene',5)

e mas info: https://docs.python.org/2/library/stdtypes.html#string-formatting
nombres fichero y paths

e mddulo os -» import os
o .getcwd()
o .path.abspath('file') : devuelve path absoluto al fichero
o .path.exists('file"')
o .path.isdir('file"')
o .path.isfile('file')
o .path.join(dirname, name)
o .listdir(cwd) : devuelve una lista de ficheros y directorios de cwd

catch exceptions

fin = open('fichero no existente'
line fin:
line
fin.close

"Error"

databases

e import anydbm
o solo soporta strings = uso de pickling
db = anydbm.open('captions.db','c")
o 'c': crear si no existe aln
¢ uso como diccionario
o asignacién
o recorridos: key,items
db.close()

pickling

e para superar la limtacién de anydbm de trabajar solo con strings, usamos el médulo pickle
e convierte casi cualquier cosa a una representacién en string y viceversa

e import pickle

e pickle.dumps(<anything>)

¢ pickle.loads(<string>)

e moédulo shelve ??

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/


https://docs.python.org/2/library/stdtypes.html#string-formatting

Last update:
05/06/2019 development:python:thinkpython https://miguelangel.torresegea.es/wiki/development:python:thinkpython?rev=1559750545
09:02

Pipes

¢ cualquier comando que se pueda lanzar desde la shell se puede lanzar como un pipe en python
e os.popen('ls -1') : popen estd deprecado a favor de subprocess

e filename 'book. tex'
cmd 'md5sum ' + filename
p 0S.popen(cmd
res fp.read
stat fp.close() // devuelve None si todo correcto
// res contiene el resultado comando

Modulos

cualquier fichero que contenga cédigo python puede ser importado como un médulo
¢ normalmente solo se definen funciones, otro cddigo seria ejecutado
para evitar la ejecucién de ese cddigo cuando el programa se usa como moédulo, se afade:

__name___
codigo

~_main

o name es una variable interna que se setea al arrancar el programa. Contiene main si se ejecuta
como script
un médulo que se importa una vez no puede ser reimportado, aunque haya cambiado
para eso, usar reload, pero parece no ser muy estable o deseado

Clases y objetos

otros

e raise: provoca/lanza una excepcién
¢ variables globales:
o para ser manipuladas en una funcién, se han de declarar previamente global <var> si son
inmutables
o si son mutables (listas, diccionarios), se puede afiadir, borrar, modificar sin problema. Solo se
tendrian que declarar en caso de reasignacién

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:

Last update: 05/06/2019 09:02

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 14:56


https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/development:python:thinkpython?rev=1559750545

	think python
	cadenas
	list
	diccionarios
	Tuplas
	13
	ficheros
	escritura fichero
	nombres fichero y paths
	catch exceptions
	databases
	pickling
	Pipes
	Modulos

	Clases y objetos
	otros


