
14/02/2026 14:56 1/5 think python

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

think python

cadenas

<string>.capitalize()
<string>.isupper()
list(cadena) : separa en caracteres
<string>.split() : separa en palabras

se puede pasar por parámetro el delimitador
<delimitador>.join(<lista>): junta los elementos de la lista, poniendo en medio el delimitador (!!)

list

por referencia (aliasing, más de una referencia al mismo objeto)
OJO al usar funciones o métodos al trabajar con listas, (referencia VS new lista) : página 96
empty = [], cadenas = ['uno','dos','tres','cuatro','cinco'], numeros = [1,2,3],
mixta = ['uno',2,['tres',3],'cuatro']
mutables : cadenas[1] = 'DOS'
búquedas: 'tres' in cadenas → true
recorridos:

for i in numeros:
for i in range(len(mixta)):

concatenación: otra_mixta = cadenas + numeros → ['uno','dos','tres','cuatro','cinco',1,2,3]
multiplicativo: numeros * 2 → [1,2,3,1,2,3]
slices:

de los índices pasados, incluye el primero, excluye el segundo.
cadenas[1:] → ['dos','tres','cuatro','cinco']
cadenas[:1] → ['uno','dos']
cadenas[2:4] → ['tres','cuatro']
asignación:

cadenas[2:3]=['aaa','bbb'] → ['uno','aaa','bbb','cuatro','cinco']
métodos:

<list>.append() : añade elemento al final
<list>.extend(<list>) : añade al final de la lista otra lista, cambia la primera.
<list>.sort() : ordena
<list>.pop(#elemento) : extrae elemento de la lista (lo devuelve) en función del índice del
mismo

del <list>[#elemento] : borra sin devolverlo en función del índice del mismo. permite
slices
<list>.remove(elemento) : borra el elemento si sabemos cual es

print list('cadena') : ['c','a','d','e','n','a']

diccionarios

pareja clave-valor
no mantiene el orden de entrada dentro del diccionario
empty = dict()
diccio = {}
asignación: diccio[<clave>] = 'valor'
len: len(<diccionario>)

Last update:
05/06/2019
13:25

development:python:thinkpython https://miguelangel.torresegea.es/wiki/development:python:thinkpython?rev=1559766326

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 14:56

get : recupera un valor de una clave y permite establecer un valor por defecto (si no existe la clave)
<diccionario>.get('<clave>',<default>)

keys : devuelve como lista las keys de un diccionario
in :

busca en las claves, devuelve cierto/falso → '<clave>' in diccio
con el uso de <diccionario>.values() se pueden hacer búsquedas en los valores
búsqueda por hashtable
not in

INVERSE pagína 127 → inverse[val] = [key] ????

Tuplas

secuencia de valores, separados por coma, inmutables
tupla = 'a','b','c','d'
tupla = ('a','b','c','d')
tupla = 'a', ← nótese la coma final

type(tupla)
tupla = tuple('cadena')

print tupa → ('c','a','d','e','n','a')
acceso a elementos:

tupla[0]
tupla[1:3] ← primero inclusive, último no

no se puede reasignar un valor a través del índice, por su caracter inmutable, pero si:
tuplaNueva = ('C',) + tupla[1:] → ('C','a','d','e','n','a')

usando tuplas:
para intercambiar valores: a,b = b,a
separar una cadena: add='nombre@dominio.com → nombre,dominio = addr.split('@')

en funciones:
parámetros variables a una función (gathers): def printall(*args):
pasar parámtros a través de tuplas, cuando la función espera los valores por separado: t =
(7,3) ; divmod(*t) ← sin * da error

zip: combina dos tuplas, generando una lista de tuplas con un elemento de cada (hasta la más corta)
s = 'abc' ; t = [0,1,2]; mizip = zip(s,t) → [('a', 0), ('b', 1), ('c', 2)]
for letra,numero in mizip:print numero,letra

enumerate: for indice,elemento in enumerate('abc'):
diccionarios:

uso de items() para pasar el diccionario a tuplas
uso de dict() para pasar una lista de tuplas a diccionario

en combinación: d = dict(zip('abc',range(3))) → {'a': 0, 'c': 2, 'b': 1}
es de uso común usar tuplas como índices de diccionarios
se pueden usar operadores lógicos de comparación con tuplas, se van comparando elemento a elemento
hasta que satisface la operación
sort se usa de una manera similar (ejemplo SORT en página 119)

13

ficheros

escritura fichero

14/02/2026 14:56 3/5 think python

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

escritura: fout = open('fichero.txt','w') ; fout.write('una linea') ; fout.close()
fout requiere string

str()
format operator % → palabras=5 ; fout.write('Una cadena de %d palabras' %
palabras)

si hay más de 1 variables, ha de ser una tupla:'La cadena %s %d palabras' %
('tiene',5)
más info: https://docs.python.org/2/library/stdtypes.html#string-formatting

nombres fichero y paths

módulo os → import os
.getcwd()
.path.abspath('file') : devuelve path absoluto al fichero
.path.exists('file')
.path.isdir('file')
.path.isfile('file')
.path.join(dirname,name)
.listdir(cwd) : devuelve una lista de ficheros y directorios de cwd

catch exceptions

try:
 fin = open('fichero_no_existente')
 for line in fin:
 print line
 fin.close()
except:
 print "Error"

databases

import anydbm
solo soporta strings → uso de pickling

db = anydbm.open('captions.db','c')
'c' : crear si no existe aún

uso como diccionario
asignación
recorridos: key,items

db.close()

pickling

para superar la limtación de anydbm de trabajar solo con strings, usamos el módulo pickle
convierte casi cualquier cosa a una representación en string y viceversa
import pickle
pickle.dumps(<anything>)
pickle.loads(<string>)
módulo shelve ??

https://docs.python.org/2/library/stdtypes.html#string-formatting

Last update:
05/06/2019
13:25

development:python:thinkpython https://miguelangel.torresegea.es/wiki/development:python:thinkpython?rev=1559766326

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 14:56

Pipes

cualquier comando que se pueda lanzar desde la shell se puede lanzar como un pipe en python
os.popen('ls -l') : popen está deprecado a favor de subprocess

filename = 'book.tex'
cmd = 'md5sum ' + filename
fp = os.popen(cmd)
res = fp.read()
stat = fp.close() // devuelve None si todo correcto
// res contiene el resultado del comando

Modulos

cualquier fichero que contenga código python puede ser importado como un módulo
normalmente solo se definen funciones, otro código sería ejecutado
para evitar la ejecución de ese código cuando el programa se usa como módulo, se añade:

if __name__ == '__main__':
codigo

name es una variable interna que se setea al arrancar el programa. Contiene main si se ejecuta
como script

un módulo que se importa una vez no puede ser reimportado, aunque haya cambiado
para eso, usar reload, pero parece no ser muy estable o deseado

Clases y objetos

class Point(object):
 attributes: x,y

class Rectangle(object):
 attributes: width,height,corner

box = Rectangle()
box.width = 100.0
box.height = 200.0
box.corner = Point()
box.corner.x = 0.0
box.corner.y = 0.0

import copy : copia objetos (aunque no objetos dentro del objeto si los hubiese, así que ese objeto
embebido sería el mismo para los 2 objetos creados a través de copy.copy) → usar copy.deepcopy

Clases y funciones

funciones puras: no modifican los objetos
funciones modificadoras : lo contrario

14/02/2026 14:56 5/5 think python

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Clases y métodos (17)

otros

raise : provoca/lanza una excepción
variables globales:

para ser manipuladas en una función, se han de declarar previamente global <var> si son
inmutables
si son mutables (listas, diccionarios), se puede añadir, borrar, modificar sin problema. Solo se
tendrían que declarar en caso de reasignación

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/development:python:thinkpython?rev=1559766326

Last update: 05/06/2019 13:25

https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/development:python:thinkpython?rev=1559766326

	think python
	cadenas
	list
	diccionarios
	Tuplas
	13
	ficheros
	escritura fichero
	nombres fichero y paths
	catch exceptions
	databases
	pickling
	Pipes
	Modulos

	Clases y objetos
	Clases y funciones
	Clases y métodos (17)
	otros

