15/02/2026 11:40 1/5 think python

think python

cadenas

inmutables
<string>[char]

o -1:last

o -2 : pre-last
<string>[posl:pos2]
<string>[:pos2], <string>[pos2:],<string>[-pos2:]
<string>.capitalize()
<string>.isupper()
list(cadena) : separa en caracteres
<string>.split() : separa en palabras

o se puede pasar por parametro el delimitador
<delimitador>.join(<lista>): junta los elementos de la lista, poniendo en medio el delimitador (!!)
len(string)

por referencia (aliasing, mas de una referencia al mismo objeto)

0JO al usar funciones o0 métodos al trabajar con listas, (referencia VS new lista) : pagina 96

empty = [], cadenas = ['uno', 'dos', 'tres', 'cuatro','cinco'], numeros = [1,2,3],
mixta = ['uno',2,['tres',3], 'cuatro']

mutables : cadenas[1] = 'DOS'
blquedas: 'tres' in cadenas - true
recorridos:

o for i in numeros:
o for i in range(len(mixta)):
* range(num): genera progresion aritmética de 0 a num
= range(inicio, fin[,salto])
concatenacién: otra mixta = cadenas + numeros - ['uno','dos','tres','cuatro','cinco’,1,2,3]
multiplicativo: numeros * 2 -[1,2,3,1,2,3]
slices:
o de los indices pasados, incluye el primero, excluye el segundo.
cadenas[1:] - ['dos','tres','cuatro’,'cinco']
cadenas[:1] - ['uno','dos']
cadenas[2:4] - ['tres','cuatro']
asignacion:
= cadenas[2:3]=["'aaa', 'bbb'] - ['uno','aaa’,'bbb','cuatro’,'cinco']
métodos:
o <list>.append() : aflade elemento al final
o <list>.extend(<list>) : afiade al final de la lista otra lista, cambia la primera.
o <list>.sort() : ordena
o <list>.pop(#elemento) : extrae elemento de la lista (lo devuelve) en funcién del indice de
mismo
» del <list>[#elemento] : borra sin devolverlo en funcién del indice del mismo. permite
slices
= <list>.remove(elemento) : borra el elemento si sabemos cual es
o print list('cadena') :['c''a','d",'e','n",'a']

[¢]

[¢]

o

[¢]

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last update:
26/05/2022 development:python:thinkpython https://miguelangel.torresegea.es/wiki/development:python:thinkpython?rev=1653587848
10:57

diccionarios

¢ pareja clave-valor
¢ no mantiene el orden de entrada dentro del diccionario
e empty = dict()
e diccio = {}
e asignacién: diccio[<clave>] = 'valor'
¢ len: len(<diccionario>)
e get : recupera un valor de una clave y permite establecer un valor por defecto (si no existe la clave)
o <diccionario>.get('<clave>',6<default>)
¢ keys : devuelve como lista las keys de un diccionario
e in:
o busca en las claves, devuelve cierto/falso » '<clave>' in diccio
o con el uso de <diccionario>.values() se pueden hacer busquedas en los valores
busqueda por hashtable
o notin
INVERSE pagina 127 -» inverse[val] = [key] ????

[¢]

Tuplas
e secuencia de valores, separados por coma, inmutables
° tup-l.a = |a| , |b|’ |c|’ |d|
.tup'l-a=(lal'lbl’lcl’ldl)
e tupla = 'a', « nétese la coma final

o type(tupla)
e tupla = tuple('cadena')
o print tupa - ('c','a''d".'e','n",'a")
® acceso a elementos:
o tuplal0]
o tupla[1l:3] « primero inclusive, Ultimo no
* no se puede reasignar un valor a través del indice, por su caracter inmutable, pero si:
o tuplaNueva = ('C',) + tupla[l:] - ('C\,a','d'e','n''a")
¢ usando tuplas:
o para intercambiar valores: a,b = b,a
o separar una cadena: add="'nombre@dominio.com —» nombre,dominio = addr.split('@')
¢ en funciones:
o parametros variables a una funcién (gathers): def printall(*args):
o pasar pardmtros a través de tuplas, cuando la funcién espera los valores por separado: t =
(7,3) ; divmod(*t) « sin * da error
e zip: combina dos tuplas, generando una lista de tuplas con un elemento de cada (hasta la mas corta)
os = 'abc';t = [0,1,2];mizip = zip(s,t) = [('a', 0), ('b", 1), ('c', 2)]
o for letra,numero in mizip:print numero, letra
e enumerate: for indice,elemento in enumerate('abc'):
e diccionarios:
o uso de items () para pasar el diccionario a tuplas
o uso de dict() para pasar una lista de tuplas a diccionario
e en combinacién: d = dict(zip('abc',range(3))) - {'a: 0,'c:2,'b": 1}
e es de uso comun usar tuplas como indices de diccionarios
e se pueden usar operadores ldgicos de comparacién con tuplas, se van comparando elemento a elemento
hasta que satisface la operacién
e sort se usa de una manera similar (ejemplo SORT en pagina 119)

https://miguelangel.torresegea.es/wiki/ Printed on 15/02/2026 11:40



15/02/2026 11:40 3/5 think python

13

ficheros

escritura fichero

e escritura: fout = open('fichero.txt','w'); fout.write('una linea') ; fout.close()
o fout requiere string

= str()
= format operator % - palabras=5; fout.write('Una cadena de %d palabras' %
palabras)
¢ si hay mas de 1 variables, ha de ser una tupla:'La cadena %s %d palabras' %
('tiene',5)

e mas info: https://docs.python.org/2/library/stdtypes.html#string-formatting
nombres fichero y paths

e moédulo os -» import os
o .getcwd()
o .path.abspath('file') : devuelve path absoluto al fichero
o .path.exists('file')
o .path.isdir('file"')
o .path.isfile('file"')
o .path.join(dirname, name)
o .listdir(cwd) : devuelve una lista de ficheros y directorios de cwd

catch exceptions

fin = open('fichero no existente'
line fin:
line
fin.close

"Error"

databases

import anydbm
o solo soporta strings = uso de pickling
db = anydbm.open('captions.db’','c")
o 'c': crear si no existe aln
¢ uso como diccionario
o asignhacién
o recorridos: key,items
db.close()

pickling

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/


https://docs.python.org/2/library/stdtypes.html#string-formatting

Last update:

26/05/2022

10:57

para superar la limtacién de anydbm de trabajar solo con strings, usamos el médulo pickle

convierte casi cualquier cosa a una representacién en string y viceversa
import pickle

pickle.dumps(<anything>)

pickle.loads(<string>)

mddulo shelve ??

Pipes

cualquier comando que se pueda lanzar desde la shell se puede lanzar como un pipe en python

os.popen('ls -1') : popen estd deprecado a favor de subprocess

e filename 'book. tex'

cmd 'md5sum ' + filename

fp 0S.popen(cmd

res fp.read

stat = fp.close() // devuelve None si todo correcto
// res contiene el resultado comando

Modulos

cualquier fichero que contenga cddigo python puede ser importado como un médulo
normalmente solo se definen funciones, otro cddigo seria ejecutado

para evitar la ejecucién de ese cddigo cuando el programa se usa como médulo, se afiade:

__name ' main_ ':
codigo

o name es una variable interna que se setea al arrancar el programa. Contiene main si se ejecuta

como script
un médulo que se importa una vez no puede ser reimportado, aunque haya cambiado
para eso, usar reload, pero parece no ser muy estable o deseado

Clases y objetos

box
box
box.
box.
box.
box.

Point (object

attributes: x,y

Rectangle(object

attributes: width, height, corner

Rectangle

.width

height

corner Point
corner.x
corner.y

import copy : copia objetos (aunque no objetos dentro del objeto si los hubiese, asi que ese objeto
embebido serfa el mismo para los 2 objetos creados a través de copy.copy) - usar copy.deepcopy

https://miguelangel.torresegea.es/wiki/

development:python:thinkpython https://miguelangel.torresegea.es/wiki/development:python:thinkpython?rev=1653587848

Printed on 15/02/2026 11:40



15/02/2026 11:40 5/5 think python

Clases y funciones

¢ funciones puras: no modifican los objetos
¢ funciones modificadoras : lo contrario

Clases y métodos (17)

otros

e raise: provoca/lanza una excepcién

¢ variables globales:
o para ser manipuladas en una funcién, se han de declarar previamente global <var> si son

inmutables
o si son mutables (listas, diccionarios), se puede afiadir, borrar, modificar sin problema. Solo se

tendrian que declarar en caso de reasignacion

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:

Last update: 26/05/2022 10:57

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/


https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/development:python:thinkpython?rev=1653587848

	think python
	cadenas
	list
	diccionarios
	Tuplas
	13
	ficheros
	escritura fichero
	nombres fichero y paths
	catch exceptions
	databases
	pickling
	Pipes
	Modulos

	Clases y objetos
	Clases y funciones
	Clases y métodos (17)
	otros


