
14/02/2026 09:48 1/10 Módulo 3 - Valores booleanos, ejecución condicional, bucles, listas y su procesamiento, operaciones lógicas y de bit a
bit

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Módulo 3 - Valores booleanos, ejecución
condicional, bucles, listas y su procesamiento,
operaciones lógicas y de bit a bit

Tomando decisiones

= asignación
== comparación, es igual
!= no es igual
>,<,>=,⇐

if

if <exp>:
 linea1
 linea2
 elif <exp>:
 linea5
 linea6
 else:
 linea3
 linea4

if number1 > number2: larger_number = number1
else: larger_number = number2

no mezclar tabs y espacios en blanco en la indentación
else es la última rama de la cascada, opcionalmente

bucles (ciclos)

algoritmo, pseudocódigo
max(): máximo de X números → min()

ejercicio

Érase una vez una tierra de leche y miel, habitada por gente feliz y próspera. La
gente pagaba impuestos, por supuesto, su felicidad tenía límites. El impuesto más
importante, denominado Impuesto Personal de Ingresos (IPI, para abreviar) tenía que
pagarse una vez al año y se evaluó utilizando la siguiente regla:

Si el ingreso del ciudadano no era superior a 85,528 pesos, el impuesto era igual
al 18% del ingreso menos 556 pesos y 2 centavos (esta fue la llamada exención
fiscal).
Si el ingreso era superior a esta cantidad, el impuesto era igual a 14,839 pesos y
2 centavos, más el 32% del excedente sobre 85,528 pesos.
Tu tarea es escribir una calculadora de impuestos.

Last
update:
09/06/2022
11:35

info:cursos:netacad:python:pe1m3 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m3?rev=1654799707

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 09:48

Debe aceptar un valor de punto flotante: el ingreso.
A continuación, debe imprimir el impuesto calculado, redondeado a pesos totales.
Hay una función llamada round() que hará el redondeo por ti, la encontrarás en el
código de esqueleto del editor.
Nota: Este país feliz nunca devuelve dinero a sus ciudadanos. Si el impuesto
calculado es menor que cero, solo significa que no hay impuesto (el impuesto es
igual a cero). Ten esto en cuenta durante tus cálculos.

Observa el código en el editor: solo lee un valor de entrada y genera un resultado,
por lo que debes completarlo con algunos cálculos inteligentes.

income = float(input("Introduce el ingreso anual:"))

if income<=85528:
 tax = (income * 18 / 100) - 556.2
else:
 tax = 14839.2 + (income - 85528) * 32 / 100

if tax < 0: tax = 0.0

tax = round(tax, 0)
print("El impuesto es:", tax, "pesos")

ejercicio

Como seguramente sabrás, debido a algunas razones astronómicas, el año pueden ser
bisiesto o común. Los primeros tienen una duración de 366 días, mientras que los
últimos tienen una duración de 365 días.

Desde la introducción del calendario Gregoriano (en 1582), se utiliza la siguiente
regla para determinar el tipo de año:

Si el número del año no es divisible entre cuatro, es un año común.
De lo contrario, si el número del año no es divisible entre 100, es un año
bisiesto.
De lo contrario, si el número del año no es divisible entre 400, es un año común.
De lo contrario, es un año bisiesto.
Observa el código en el editor: solo lee un número de año y debe completarse con
las instrucciones que implementan la prueba que acabamos de describir.

El código debe mostrar uno de los dos mensajes posibles, que son Año Bisiesto o Año
Común, según el valor ingresado.

Sería bueno verificar si el año ingresado cae en la era Gregoriana y emitir una
advertencia de lo contrario: No dentro del período del calendario Gregoriano.
Consejo: utiliza los operadores != y %.

year = int(input("Introduce un año:"))

if year >= 1582:
 if year % 4 != 0: ano="común"
 elif year % 100 != 0: ano="bisiesto"
 elif year % 400 != 0: ano="comun"

14/02/2026 09:48 3/10 Módulo 3 - Valores booleanos, ejecución condicional, bucles, listas y su procesamiento, operaciones lógicas y de bit a
bit

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

 else: ano="bisiesto"
 print("Año "+ano)
else:
 print("no es gregoriano")

while

while conditional_expression:
 instruction

while True:
 print("Estoy atrapado dentro de un bucle.")

Si deseas ejecutar más de una sentencia dentro de un while, debes (como con if) poner sangría a todas
las instrucciones de la misma manera.
Una instrucción o conjunto de instrucciones ejecutadas dentro del while se llama el cuerpo del bucle.
Si la condición es False (igual a cero) tan pronto como se compruebe por primera vez, el cuerpo no se
ejecuta ni una sola vez (ten en cuenta la analogía de no tener que hacer nada si no hay nada que hacer).
El cuerpo debe poder cambiar el valor de la condición, porque si la condición es True al principio, el
cuerpo podría funcionar continuamente hasta el infinito. Observa que hacer una cosa generalmente
disminuye la cantidad de cosas por hacer.

ejercicio

Un mago junior ha elegido un número secreto. Lo ha escondido en una variable
llamada secret_number. Quiere que todos los que ejecutan su programa jueguen el
juego Adivina el número secreto, y adivina qué número ha elegido para ellos.
¡Quiénes no adivinen el número quedarán atrapados en un bucle sin fin para siempre!
Desafortunadamente, él no sabe cómo completar el código.

Tu tarea es ayudar al mago a completar el código en el editor de tal manera que el
código:

Pedirá al usuario que ingrese un número entero.
Utilizará un bucle while.
Comprobará si el número ingresado por el usuario es el mismo que el número escogido
por el mago. Si el número elegido por el usuario es diferente al número secreto del
mago, el usuario debería ver el mensaje "¡Ja, ja! ¡Estás atrapado en mi bucle!" y
se le solicitará que ingrese un número nuevamente. Si el número ingresado por el
usuario coincide con el número escogido por el mago, el número debe imprimirse en
la pantalla, y el mago debe decir las siguientes palabras: "¡Bien hecho, muggle!
Eres libre ahora".
¡El mago está contando contigo! No lo decepciones.

INFO EXTRA

Por cierto, observa la función print(). La forma en que lo hemos utilizado aquí se
llama impresión multilínea. Puede utilizar comillas triples para imprimir cadenas
en varias líneas para facilitar la lectura del texto o crear un diseño especial
basado en texto. Experimenta con ello.

secret_number = 777

Last
update:
09/06/2022
11:35

info:cursos:netacad:python:pe1m3 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m3?rev=1654799707

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 09:48

print(
"""
+==================================+
| ¡Bienvenido a mi juego, muggle! |
| Introduce un número entero |
| y adivina qué número he |
| elegido para ti. |
| Entonces, |
| ¿Cuál es el número secreto? |
+==================================+
""")
num = 0

while num!=secret_number:
 num = int(input())
 if num!=secret_number: print("¡Ja, ja! ¡Estás atrapado en mi bucle!")
 else: print("¡Bien hecho, muggle! Eres libre ahora")

for

for i in range(100):
 # do_something()
 pass

for i in range(2, 8):
 print("El valor de i es actualmente", i)

La palabra reservada for abre el bucle for; nota - No hay condición después de eso; no tienes que pensar
en las condiciones, ya que se verifican internamente, sin ninguna intervención.
Cualquier variable después de la palabra reservada for es la variable de control del bucle; cuenta los
giros del bucle y lo hace automáticamente.
La palabra reservada in introduce un elemento de sintaxis que describe el rango de valores posibles que
se asignan a la variable de control.
La función range() (esta es una función muy especial) es responsable de generar todos los valores
deseados de la variable de control; en nuestro ejemplo, la función creará (incluso podemos decir que
alimentará el bucle con) valores subsiguientes del siguiente conjunto: 0, 1, 2 .. 97, 98, 99; nota: en este
caso, la función range() comienza su trabajo desde 0 y lo finaliza un paso (un número entero) antes del
valor de su argumento.
Nota la palabra clave pass dentro del cuerpo del bucle - no hace nada en absoluto; es una instrucción
vacía : la colocamos aquí porque la sintaxis del bucle for exige al menos una instrucción dentro del
cuerpo (por cierto, if, elif, else y while expresan lo mismo).

for i in range(2, 8, 3):
 print("El valor de i es actualmente", i)

La función range() también puede aceptar tres argumentos: Echa un vistazo al código del editor.
El tercer argumento es un incremento: es un valor agregado para controlar la variable en cada giro del
bucle (como puedes sospechar, el valor predeterminado del incremento es 1).
el conjunto generado por range() debe ordenarse en un orden ascendente. No hay forma de forzar el
range() para crear un conjunto en una forma diferente. Esto significa que el segundo argumento de
range() debe ser mayor que el primero.

14/02/2026 09:48 5/10 Módulo 3 - Valores booleanos, ejecución condicional, bucles, listas y su procesamiento, operaciones lógicas y de bit a
bit

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

ejercicio

¿Sabes lo que es Mississippi? Bueno, es el nombre de uno de los estados y ríos en
los Estados Unidos. El río Mississippi tiene aproximadamente 2,340 millas de largo,
lo que lo convierte en el segundo río más largo de los Estados Unidos (el más largo
es el río Missouri). ¡Es tan largo que una sola gota de agua necesita 90 días para
recorrer toda su longitud!

La palabra Mississippi también se usa para un propósito ligeramente diferente: para
contar mississippily (mississippimente).

Si no estás familiarizado con la frase, estamos aquí para explicarte lo que
significa: se utiliza para contar segundos.

La idea detrás de esto es que agregar la palabra Mississippi a un número al contar
los segundos en voz alta hace que suene más cercano al reloj, y por lo tanto "un
Mississippi, dos Mississippi, tres Mississippi" tomará aproximadamente unos tres
segundos reales de tiempo. A menudo lo usan los niños que juegan al escondite para
asegurarse de que el buscador haga un conteo honesto.

Tu tarea es muy simple aquí: escribe un programa que use un bucle for para "contar
de forma mississippi" hasta cinco. Habiendo contado hasta cinco, el programa
debería imprimir en la pantalla el mensaje final "¡Listos o no, ahí voy!"

Utiliza el esqueleto que hemos proporcionado en el editor.

INFO EXTRA

Ten en cuenta que el código en el editor contiene dos elementos que pueden no ser
del todo claros en este momento: la sentencia import time y el método sleep().
Vamos a hablar de ellos pronto.

Por el momento, nos gustaría que supieras que hemos importado el módulo time y
hemos utilizado el método sleep() para suspender la ejecución de cada función
posterior de print() dentro del bucle for durante un segundo, de modo que el
mensaje enviado a la consola se parezca a un conteo real. No te preocupes, pronto
aprenderás más sobre módulos y métodos.

import time

for count in range(1,6):
 print(count,"Mississippi")
 time.sleep(1)
print("¡Listos o no, ahí voy!")

break y continue

Hasta ahora, hemos tratado el cuerpo del bucle como una secuencia indivisible e inseparable de instrucciones
que se realizan completamente en cada giro del bucle. Sin embargo, como desarrollador, podrías enfrentar las
siguientes opciones:

Parece que no es necesario continuar el bucle en su totalidad; se debe abstener de seguir ejecutando el cuerpo

Last
update:
09/06/2022
11:35

info:cursos:netacad:python:pe1m3 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m3?rev=1654799707

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 09:48

del bucle e ir más allá. Parece que necesitas comenzar el siguiente giro del bucle sin completar la ejecución del
turno actual. Python proporciona dos instrucciones especiales para la implementación de estas dos tareas.
Digamos por razones de precisión que su existencia en el lenguaje no es necesaria: un programador
experimentado puede codificar cualquier algoritmo sin estas instrucciones. Tales adiciones, que no mejoran el
poder expresivo del lenguaje, sino que solo simplifican el trabajo del desarrollador, a veces se denominan
dulces sintácticos o azúcar sintáctica.

Estas dos instrucciones son:

break: sale del bucle inmediatamente, e incondicionalmente termina la operación del bucle; el programa
comienza a ejecutar la instrucción más cercana después del cuerpo del bucle.
continue: se comporta como si el programa hubiera llegado repentinamente al final del cuerpo; el
siguiente turno se inicia y la expresión de condición se prueba de inmediato.

Ambas palabras son palabras clave reservadas.

ejemplos

break - ejemplo

print("La instrucción break:")
for i in range(1, 6):
 if i == 3:
 break
 print("Dentro del bucle.", i)
print("Fuera del bucle.")

continue - ejemplo

print("\nLa instrucción continue:")
for i in range(1, 6):
 if i == 3:
 continue
 print("Dentro del bucle.", i)
print("Fuera del bucle.")

largest_number = -99999999
counter = 0

while True:
 number = int(input("Ingresa un número o escribe -1 para finalizar el programa:
"))
 if number == -1:
 break
 counter += 1
 if number > largest_number:
 largest_number = number

if counter != 0:
 print("El número más grande es", largest_number)
else:
 print("No has ingresado ningún número.")

14/02/2026 09:48 7/10 Módulo 3 - Valores booleanos, ejecución condicional, bucles, listas y su procesamiento, operaciones lógicas y de bit a
bit

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

largest_number = -99999999
counter = 0

number = int(input("Ingresa un número o escribe -1 para finalizar el programa: "))

while number != -1:
 if number == -1:
 continue
 counter += 1

 if number > largest_number:
 largest_number = number
 number = int(input("Ingresa un número o escribe -1 para finalizar el programa:
"))

if counter:
 print("El número más grande es", largest_number)
else:
 print("No has ingresado ningún número.")

ejercicio

La instrucción break se implementa para salir/terminar un bucle.

Diseña un programa que use un bucle while y le pida continuamente al usuario que
ingrese una palabra a menos que ingrese "chupacabra" como la palabra de salida
secreta, en cuyo caso el mensaje "¡Has dejado el bucle con éxito". Debe imprimirse
en la pantalla y el bucle debe terminar.

No imprimas ninguna de las palabras ingresadas por el usuario. Utiliza el concepto
de ejecución condicional y la sentencia break.

while True:
 text = input()
 if text == "chupacabra": break
print("¡Has dejado el bucle con éxito")

ejercicio

La sentencia continue se usa para omitir el bloque actual y avanzar a la siguiente
iteración, sin ejecutar las sentencias dentro del bucle.

Se puede usar tanto con while y for.

Tu tarea aquí es muy especial: ¡Debes diseñar un devorador de vocales! Escribe un
programa que use:

Un bucle for.
El concepto de ejecución condicional (if-elif-else).
La sentencia continue.
Tu programa debe:

Pedir al usuario que ingrese una palabra.

Last
update:
09/06/2022
11:35

info:cursos:netacad:python:pe1m3 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m3?rev=1654799707

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 09:48

Utiliza user_word = user_word.upper() para convertir la palabra ingresada por el
usuario a mayúsculas; hablaremos sobre los llamados métodos de cadena y el upper()
muy pronto, no te preocupes.
Utiliza la ejecución condicional y la instrucción continue para "comer" las
siguientes vocales A , E , I , O , U de la palabra ingresada.
Imprime las letras no consumidas en la pantalla, cada una de ellas en una línea
separada.

user_word = input()
user_word = user_word.upper()

for letter in user_word:
 if letter=="A" or letter=="E" or letter=="I" or letter=="O" or letter=="U":
continue
 print(letter)

ejercicio

Tu tarea aquí es aún más especial que antes: ¡Debes rediseñar el devorador de
vocales (feo) del laboratorio anterior (3.1.2.10) y crear un mejor devorador de
vocales (bonito) mejorado! Escribe un programa que use:

Un bucle for.
El concepto de ejecución condicional (if-elif-else).
La instrucción continue.
Tu programa debe:

Pedir al usuario que ingrese una palabra.
Utilizar user_word = user_word.upper() para convertir la palabra ingresada por el
usuario a mayúsculas; hablaremos sobre los llamados métodos de cadena y el upper()
muy pronto, no te preocupes.
Emplea la ejecución condicional y la instrucción continue para "comer" las
siguientes vocales A , E , I , O , U de la palabra ingresada.
Asigne las letras no consumidas a la variable word_without_vowels e imprime la
variable en la pantalla.
Analiza el código en el editor. Hemos creado word_without_vowels y le hemos
asignado una cadena vacía. Utiliza la operación de concatenación para pedirle a
Python que combine las letras seleccionadas en una cadena más larga durante los
siguientes giros de bucle, y asignarlo a la variable word_without_vowels.

word_without_vowels = ""

user_word = input()
user_word = user_word.upper()

for letter in user_word:
 if letter=="A": continue
 elif letter=="E": continue
 elif letter=="I": continue
 elif letter=="O": continue
 elif letter=="U": continue
 else: word_without_vowels += letter

14/02/2026 09:48 9/10 Módulo 3 - Valores booleanos, ejecución condicional, bucles, listas y su procesamiento, operaciones lógicas y de bit a
bit

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

print(word_without_vowels)

El bucle while y la rama else

i = 1
while i < 5:
 print(i)
 i += 1
else:
 print("else:", i)

El bucle for y la rama else

for i in range(5):
 print(i)
else:
 print("else:", i)

ejercicio

Escucha esta historia: Un niño y su padre, un programador de computadoras, juegan
con bloques de madera. Están construyendo una pirámide.

Su pirámide es un poco rara, ya que en realidad es una pared en forma de pirámide,
es plana. La pirámide se apila de acuerdo con un principio simple: cada capa
inferior contiene un bloque más que la capa superior.

Tu tarea es escribir un programa que lea la cantidad de bloques que tienen los
constructores, y generar la altura de la pirámide que se puede construir utilizando
estos bloques.

Nota: La altura se mide por el número de capas completas: si los constructores no
tienen la cantidad suficiente de bloques y no pueden completar la siguiente capa,
terminan su trabajo inmediatamente.

Prueba tu código con los datos que hemos proporcionado.

blocks = int(input("Ingresa el número de bloques: "))

used_blocks = 0
height = 0

while blocks>=used_blocks:
 height += 1
 used_blocks = used_blocks + height
 if (used_blocks+height) >= blocks: break

print("La altura de la pirámide:", height)

Last
update:
09/06/2022
11:35

info:cursos:netacad:python:pe1m3 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m3?rev=1654799707

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 09:48

ejercicio

En 1937, un matemático alemán llamado Lothar Collatz formuló una hipótesis
intrigante (aún no se ha comprobado) que se puede describir de la siguiente manera:

Toma cualquier número entero que no sea negativo y que no sea cero y asígnale el
nombre c0.
Si es par, evalúa un nuevo c0 como c0 Ã· 2.
De lo contrario, si es impar, evalúe un nuevo c0 como 3 Ã� c0 + 1.
Si c0 â� 1, salta al punto 2.
La hipótesis dice que, independientemente del valor inicial de c0, el valor siempre
tiende a 1.

Por supuesto, es una tarea extremadamente compleja usar una computadora para probar
la hipótesis de cualquier número natural (incluso puede requerir inteligencia
artificial), pero puede usar Python para verificar algunos números individuales.
Tal vez incluso encuentres el que refutaría la hipótesis.

Escribe un programa que lea un número natural y ejecute los pasos anteriores
siempre que c0 sea diferente de 1. También queremos que cuente los pasos necesarios
para lograr el objetivo. Tu código también debe mostrar todos los valores
intermedios de c0.

Sugerencia: la parte más importante del problema es como transformar la idea de
Collatz en un bucle while- esta es la clave del éxito.

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m3?rev=1654799707

Last update: 09/06/2022 11:35

https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m3?rev=1654799707

	Módulo 3 - Valores booleanos, ejecución condicional, bucles, listas y su procesamiento, operaciones lógicas y de bit a bit
	Tomando decisiones
	if
	bucles (ciclos)
	ejercicio
	ejercicio

	while
	ejercicio

	for
	ejercicio

	break y continue
	ejemplos
	ejercicio
	ejercicio
	ejercicio

	El bucle while y la rama else
	El bucle for y la rama else
	ejercicio
	ejercicio

