13/12/2025 07:20 1/15 Modulo 4: Excepciones

Modulo 4: Excepciones

Excepciones

El lidiar con errores de programacién tiene (al menos) dos partes. La primera es cuando te metes en problemas
porque tu cédigo, aparentemente correcto, se alimenta con datos incorrectos. Por ejemplo, esperas que se
ingrese al cédigo un valor entero, pero tu usuario descuidado ingresa algunas letras al azar.

Puede suceder que tu cddigo termine en ese momento y el usuario se quede solo con un mensaje de error
conciso y a la vez ambiguo en la pantalla. El usuario estard insatisfecho y tu también deberias estarlo. Te
mostraremos cdmo proteger tu cddigo de este tipo de fallas y cdmo no provocar la ira del usuario.

La segunda parte de lidiar con errores de programacion se revela cuando ocurre un comportamiento no
deseado del programa debido a errores que se cometieron cuando se estaba escribiendo el cédigo. Este tipo de
error se denomina cominmente «bug» (bicho en inglés), que es una manifestacién de una creencia bien
establecida de que, si un programa funciona mal, esto debe ser causado por bichos maliciosos que viven dentro
del hardware de la computadora y causan cortocircuitos u otras interferencias.

Esta idea no es tan descabellada como puede parecer: incidentes de este tipo eran comunes en tiempos en que
las computadoras ocupaban grandes pasillos, consumian kilovatios de electricidad y producian enormes
cantidades de calor. Afortunadamente, o no, estos tiempos se han ido para siempre y los (nicos errores que
pueden estropear tu cédigo son los que tU mismo sembraste en el cédigo. Por lo tanto, intentaremos mostrarte
cémo encontrar y eliminar tus errores, en otras palabras, cdémo depurar tu cédigo.

Cuando los datos no son lo que deberian ser

Escribamos un fragmento de cédigo extremadamente trivial: leerd un nimero natural (un entero no negativo) e
imprimira su reciproco. De esta forma, 2 se convertird en 0.5 (1/2) y 4 en 0.25 (1/4).

value = int(input('Ingresa un numero natural: '
'"El reciproco de', value, 'es' /value

(Hay algo que pueda salir mal? El cédigo es tan breve y compacto que no parece que vayamos a encontrar
ningun problema alli.

Parece que ya sabes hacia dénde vamos. Si, tienes razén: ingresar datos que no sean un nimero entero (que
también incluye ingresar nada) arruinard completamente la ejecucién del programa. Esto es lo que vera el
usuario del cédigo:

Traceback (most recent call last
File "code.py", line
value = int(input('Ingresa un nimero natural:
ValueError: invalid literal int base D!

Todas las lineas que muestra Python son significativas e importantes, pero la Ultima linea parece ser la mas
valiosa. La primera palabra de la linea es el nombre de la excepcion la cual provoca que tu cédigo se detenga.
Su nombre aqui es ValueError. El resto de la linea es solo una breve explicacidon que especifica con mayor
precision la causa de la excepcién ocurrida.

¢Cémo lo afrontas? ;Cémo proteges tu cddigo de la terminacién abrupta, al usuario de la decepcién y a ti mismo
de la insatisfaccién del usuario?

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
21/06/2022
10:59

info:cursos:netacad:python:pelm4:excepciones https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4:excepciones

La primera idea que se te puede ocurrir es verificar si los datos proporcionados por el usuario son validos y
negarte a cooperar si los datos son incorrectos. En este caso, la verificacién puede basarse en el hecho de que
esperamos que la cadena de entrada contenga solo digitos.

Ya deberias poder implementar esta verificacidn y escribirla tu mismo, ;no es asi? También es posible
comprobar si la variable value es de tipo int (Python tiene un medio especial para este tipo de comprobaciones:
es un operador llamado is. La revisidn en si puede verse de la siguiente manera:

type(value int

Su resultado es verdadero si el valor actual de la variable value es del tipo int.

Perdénanos si no dedicamos mas tiempo a esto ahora; encontraras explicaciones mas detalladas sobre el
operador is en un médulo del curso dedicado a la programacién orientada a objetos.

Es posible que te sorprendas al saber que no queremos que realices ninguna validacién preliminar de datos.
iPor qué? Porque esta no es la forma que Python recomienda.

El Cadigo Python

En el mundo de Python, hay una regla que dice: «Es mejor pedir perddn que pedir permiso».

Detengamonos aqui por un momento. No nos malinterpretes, no queremos que apliques la regla en tu vida
diaria. No tomes el automovil de nadie sin permiso, con la esperanza de que puedas ser tan convincente que
evites la condena por lo ocurrido. La regla se trata de otra cosa.

En realidad, la regla dice: «es mejor manejar un error cuando ocurre que tratar de evitarlo».

«De acuerdo», puedes decir, «pero ;cémo debo pedir perdédn cuando el programa finaliza y no queda nada que
mas por hacer?», Aqui es donde algo llamado excepcidn entra en escena.

Es un lugar donde
tu puedes hacer algo
sin pedir permiso.

Es un espacio dedicado
exclusivamente para pedir perdon.

Puedes ver dos blogues aqui:

» El primero, comienza con la palabra clave reservada try: este es el lugar donde se coloca el cédigo
guesospecha que es riesgoso y puede terminar en caso de un error; nota: este tipo de error lleva por
nombre excepcién, mientras que la ocurrencia de la excepcién se le denomina generar; podemos decir
gue se genera (o se generd) una excepcion.

69

¢ El segundo, la parte del cédigo que comienza con la palabra clave reservada except: esta parte fue
disefiada para manejar la excepcién; depende de ti lo que quieras hacer aqui: puedes limpiar el desorden
o simplemente puede barrer el problema debajo de la alfombra (aunque se prefiere la primera solucién).

70 71 Entonces, podriamos decir que estos dos bloques funcionan asi: 72 73

https://miguelangel.torresegea.es/wiki/ Printed on 13/12/2025 07:20

13/12/2025 07:20 3/15 Modulo 4: Excepciones

¢ La palabra clave reservada try marca el lugar donde intentas hacer algo sin permiso.
74

¢ La palabra clave reservada except comienza un lugar donde puedes mostrar tu talento para disculparte
0 se sospecha que es riesgoso y puede terminar en caso de un error; nota: este tipo de error lleva por
nombre excepcidn, mientras que la ocurrencia de la excepcién se le denomina generar; podemos decir
que se genera (o se generd) una excepcion.

* El seqgundo, la parte del cédigo que comienza con la palabra clave reservada except: esta parte fue
disefiada para manejar la excepcién; depende de ti lo que quieras hacer aqui: puedes limpiar el desorden
o simplemente puede barrer el problema debajo de la alfombra (aunque se prefiere la primera solucién).

Entonces, podriamos decir que estos dos bloques funcionan asi:

¢ La palabra clave reservada try marca el lugar donde intentas hacer algo sin permiso.
¢ La palabra clave reservada except comienza un lugar donde puedes mostrar tu talento para disculparte
o0 pedir perdon.

Como puedes ver, este enfoque acepta errores (los trata como una parte normal de la vida del programa) en
lugar de intensificar los esfuerzos para evitarlos por completo.

La excepcion confirma la regla

Reescribamos el cédigo para adoptar el enfoque de Python para la vida.

value input('Ingresa un nuimero natural:
'ELl reciproco de', value, 'es' /int(value

'No se que hacer con', value

Resumamos lo que hemos hablado:

o Cualquier fragmento de cédigo colocado entre try y except se ejecuta de una manera muy especial:
cualquier error que ocurra aqui dentro no terminara la ejecucion del programa. En cambio, el control
saltard inmediatamente a la primera linea situada después de la palabra clave reservada except, y no
se ejecutard ninguna otra linea del bloque try.

e El cddigo en el blogque except se activa solo cuando se ha encontrado una excepcién dentro del bloque
try. No hay forma de llegar por ningin otro medio.

e Cuando el bloque try o except se ejecutan con éxito, el control vuelve al proceso normal de ejecuciény
cualquier cédigo ubicado mas alla en el archivo fuente se ejecuta como si no hubiera pasado nada.

Ahora queremos hacerte una pregunta: ;Es ValueError la Unica forma en que el control podria caer dentro del
bloque except?

Como lidiar con mas de una excepcion

La respuesta obvia es «no»: hay mas de una forma posible de plantear una excepcién. Por ejemplo, un usuario
puede ingresar cero como entrada, ;puedes predecir lo que sucederd a continuacion?

Si, tienes razén: la divisidon colocada dentro de la invocacién de la funcién print() generard la excepcién
ZeroDivisionError. Como es de esperarse, el comportamiento del cddigo serd el mismo que en el caso
anterior: el usuario vera el mensaje «No se que hacer con...», o que parece bastante razonable en este
contexto, pero también es posible que desees manejar este tipo de problema de una manera un poco diferente.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
21/06/2022
10:59

info:cursos:netacad:python:pelm4:excepciones https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4:excepciones

(Es posible? Por supuesto que lo es. Hay al menos dos enfoques que puedes implementar aqui.

El primero de ellos es simple y complicado al mismo tiempo: puedes agregar dos bloques try por separado,
uno que incluya la invocacién de la funcién input() donde se puede generar la excepcién ValueError, y el
segundo dedicado a manejar posibles problemas inducidos por la divisién. Ambos bloques try tendrian su
propio except, y de esa manera, tendrias un control total sobre dos errores diferentes.

Esta solucién es buena, pero es un poco larga: el cddigo se hincha innecesariamente. Ademas, no es el Gnico
peligro que te espera. Toma en cuenta que dejar el primer bloque try-except deja mucha incertidumbre;
tendrds que agregar cddigo adicional para asegurarte de que el valor que ingresé el usuario sea seguro para
usar en la divisién. Asi es como una solucién aparentemente simple se vuelve demasiado complicada.

Dos excepciones después de un try.

value = input('Ingresa un nimero natural:

'El reciproco de', value, 'es' /int(value
ValueError:

'No se que hacer con', value
ZeroDivisionError:

'La divisién entre cero no esta permitida en nuestro Universo.'

Como puedes ver, acabamos de agregar un segundo except. Esta no es la Unica diferencia; toma en cuenta
gue ambos except tienen nombres de excepcion especificos. En esta variante, cada una de las excepciones
esperadas tiene su propia forma de manejar el error, pero se debe enfatizarse en que solo una de todas puede
interceptar el control; si se ejecuta una, todas las demas permanecen inactivas. Ademas, la cantidad de
excepciones no esta limitado: puedes especificar tantas o tan pocas como necesites, pero no se te olvide que
ninguna de las excepciones se puede especificar mas de una vez.

Pero esta todavia no es la Ultima palabra de Python sobre excepciones.

La excepcion por defecto y como usarla

El cédigo ha cambiado de nuevo, ;puedes ver la diferencia?

value = input('Ingresa un numero natural:

'"El reciproco de', value, 'es', 1/int(value
ValueError:

'No se que hacer con', value
ZeroDivisionError:

'La divisién entre cero no estd permitida en nuestro Universo.'
'Ha sucedido algo extrafio, ilo siento!'

Hemos agregado un tercer except, pero esta vez no tiene un nombre de excepcidn especifico; podemos
decir que es anénimo o (lo que estd mas cerca de su funcién real) es el por defecto. Puedes esperar que
cuando se genere una excepcion y no haya un except dedicado a esa excepcidn, esta sera manejada por la
excepcién por defecto.

Nota: jel except por defecto debe ser el Gltimo except! {Siempre!

https://miguelangel.torresegea.es/wiki/ Printed on 13/12/2025 07:20

13/12/2025 07:20 5/15 Modulo 4: Excepciones

Algunas excepciones utiles

Analicemos con mas detalle algunas excepciones utiles (o mas bien, las mas comunes) que puedes llegar a
experimentar.

ZeroDivisionError

Esta aparece cuando intentas forzar a Python a realizar cualquier operacién que provoque una divisién en la que
el divisor es cero o no se puede distinguir de cero. Toma en cuenta que hay mas de un operador de Python que
puede hacer que se genere esta excepcidn. ;Puedes adivinarlos todos?

Si, estos son: /, //, y %.
ValueError

Espera esta excepcion cuando estds manejando valores que pueden usarse de manera inapropiada en algun
contexto. En general, esta excepcidn se genera cuando una funcién (como int() o float()) recibe un argumento
de un tipo adecuado, pero su valor es inaceptable.

TypeError

Esta excepcién aparece cuando intentas aplicar un dato cuyo tipo no se puede aceptar en el contexto actual.
Mira el ejemplo:

short list
one value = short list

No estd permitido usar un valor flotante como indice de una lista (la misma regla también se aplica a las tuplas).
TypeError es un nombre adecuado para describir el problema y una excepcién adecuada a generar.

AttributeError

Esta excepcidn llega, entre otras ocasiones, cuando intentas activar un método que no existe en un elemento
con el que se esta tratando. Por ejemplo:

short list
short list.append
short_list.depend

La tercera linea de nuestro ejemplo intenta hacer uso de un método que no estd incluido en las listas. Este es el
lugar donde se genera la excepcién AttributeError.

SyntaxError

Esta excepcién se genera cuando el control llega a una linea de cédigo que viola la gramatica de Python. Puede
sonar extrafio, pero algunos errores de este tipo no se pueden identificar sin ejecutar primero el cédigo. Este
tipo de comportamiento es tipico de los lenguajes interpretados: el intérprete siempre trabaja con prisa y no
tiene tiempo para escanear todo el cédigo fuente. Se conforma con comprobar el cédigo que se estd ejecutando

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
21/06/2022
10:59

info:cursos:netacad:python:pelm4:excepciones https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4:excepciones

en el momento. Muy pronto se te presentara un ejemplo de esta categoria.

Es una mala idea manejar este tipo de excepciones en tus programas. Deberias producir cédigo sin errores de
sintaxis, en lugar de enmascarar las fallas que has causado.

Por qué no se puede evitar el probar tu cédigo

Aungue vamos a resumir nuestras consideraciones excepcionales aqui, no creas que es todo lo que Python
puede ofrecer para ayudarte a suplicar perdén. La maquinaria de excepciones de Python es mucho mas
compleja y sus capacidades te permiten desarrollar estrategias de manejo de errores expandidas. Volveremos a
estos temas, lo prometemos. No dudes en realizar tus experimentos y sumergirte en las excepciones por ti
mismo.

Ahora queremos contarte sobre el segundo lado de la lucha interminable contra los errores: el destino inevitable
de la vida de un desarrollador. Como no puedes evitar la creacién de errores en tu cédigo, siempre debes estar
listo para buscarlos y destruirlos. No entierres la cabeza en la arena: ignorar los errores no los hara
desaparecer.

Un deber importante para los desarrolladores es probar el cédigo recién creado, pero no debes olvidar que las
pruebas no son una forma de demostrar que el cédigo esta libre de errores. Paraddjicamente, lo Unico que las
pruebas determinan, es que tu cédigo contiene errores. No creas que puedes relajarte después de una prueba
exitosa.

El segundo aspecto importante de las pruebas de software es estrictamente psicoldgico. Es una verdad
conocida desde hace afios que los autores, incluso aquellos que son confiables y conscientes de si mismos, no
pueden evaluar y verificar objetivamente sus trabajos.

Es por eso por lo que cada novelista necesita un editor y cada programador necesita un «tester». Algunos dicen,
con un poco de rencor, pero con sinceridad, que los desarrolladores prueban su cédigo para mostrar su
perfeccién, no para encontrar problemas que puedan frustrarlos. Los «testers» o probadores estan libres de
tales dilemas, y es por eso por lo que su trabajo es mas efectivo y rentable.

Por supuesto, esto no te exime de estar atento y cauteloso. Prueba tu cédigo lo mejor que puedas. No facilites
demasiado el trabajo a los probadores.

Su deber principal es asegurarse de haber verificado todas las rutas o caminos de ejecucién por las que puede
pasar tu cédigo. ;Suena misterioso? jPor supuesto que no!

Rastreando las rutas de ejecucion

Supdn que acabas de terminar de escribir este fragmento de cédigo.
temperature = float(input('Ingresa la temperatura actual:'
temperature
"Por encima de cero"
temperature

"Por debajo de cero"

"Cero"

Existen tres rutas o caminos de ejecucién independientes en el cddigo, ;puedes verlas? Estan determinadas por

https://miguelangel.torresegea.es/wiki/ Printed on 13/12/2025 07:20

13/12/2025 07:20 7/15 Modulo 4: Excepciones

las sentencias if-elif-else. Por supuesto, las rutas de ejecucién pueden construirse mediante muchas otras
sentencias como bucles, o incluso bloques try-except.

Si vas a probar tu cédigo de manera justa y quieres dormir profundamente y sofiar sin pesadillas (las pesadillas
sobre errores pueden ser devastadoras para el rendimiento de un desarrollador), estds obligado a preparar un
conjunto de datos de prueba que obligara a tu cédigo a negociar todos los posibles caminos.

En nuestro ejemplo, el conjunto debe contener al menos tres valores flotantes: uno positivo, uno negativo y
cero.

Cuando Python cierra sus ojos

Tal prueba es crucial. Queremos mostrarte por qué no debes omitirlo. Observa el siguiente cédigo.
temperature = float(input('Ingresa la temperatura actual:'

temperature
"Por encima de cero"
temperature
prin("Por debajo de cero"

"Cero"

Introdujimos intencionalmente un error en el cédigo; esperamos que tus ojos atentos lo noten de inmediato. Si,
eliminamos solo una letra y, en efecto, la invocacién vélida de la funcién print() se convierte en la obviamente
invalida invocacion «prin()«. No existe tal funcién como «prin()« en el alcance de nuestro programa, pero ;es
realmente obvio para Python?

Ejecuta el cédigo e ingresa un 0.
Como puedes ver, el cddigo finaliza su ejecucién sin ningln obstaculo.
¢{Coémo es eso posible? ;Por qué Python pasa por alto un error de desarrollador tan evidente?

iPuedes encontrar las respuestas a estas preguntas fundamentales?

Pruebas y probadores

La respuesta es mas simple de lo esperado y también un poco decepcionante. Python, como seguramente
sabes, es un lenguaje interpretado. Esto significa que el cdédigo fuente se analiza y ejecuta al mismo tiempo.
En consecuencia, es posible que Python no tenga tiempo para analizar las lineas de cédigo que no estan sujetas
a ejecucion. Como dice un antiguo dicho de los desarrolladores: «es una caracteristica, no un error» (no utilices
esta frase para justificar el comportamiento extrafio de tu cédigo).

(Entiendes ahora por qué el pasar por todos los caminos de ejecucidn es tan vital e inevitable?

Supongamos que terminas tu cédigo y que las pruebas que has realizado son exitosas. Entregas tu cédigo a los
probadores y, jafortunadamente! - encontraron algunos errores en él. Estamos usando la palabra
«afortunadamente» de manera completamente consciente. Debes aceptar que, en primer lugar, los probadores
son los mejores amigos del desarrollador; no debes tratar a los errores que ellos encuentran como una ofensa o
una malignidad; y, en segundo lugar, cada error que encuentran los probadores es un error que no afectard a
los usuarios. Ambos factores son valiosos y merecen tu atencién.

Ya sabes que tu cddigo contiene un error o errores (lo segundo es mas probable). Ahora, ;cémo los localizas y

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
21/06/2022
10:59

info:cursos:netacad:python:pelm4:excepciones https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4:excepciones

cémo arreglas tu cédigo?

Error frente a depuracion (Bug vs. debug)

La medida basica que un desarrollador puede utilizar contra los errores es, como era de esperarse, un
depurador, mientras que el proceso durante el cual se eliminan los errores del cédigo se llama depuracién.
Segun un viejo chiste, la depuracién es un complicado juego de misterio en el que eres simultdneamente el
asesino, el detective y, la parte mds dolorosa de la intriga, la victima. ;Estas listo para interpretar todos estos
roles? Entonces debes armarte con un depurador.

Un depurador es un software especializado que puede controlar cémo se ejecuta tu programa. Con el
depurador, puedes ejecutar tu codigo linea por linea, inspeccionar todos los estados de las variables y cambiar
sus valores en cualquier momento sin modificar el cddigo fuente, detener la ejecucién del programa cuando se
cumplen o no ciertas condiciones, y hacer muchas otras tareas Utiles.

Podemos decir que todo IDE estd equipado con un depurador mas o menos avanzado. Incluso IDLE tiene uno,
aungue puedes encontrar su manejo un poco complicado y problematico. Si deseas utilizar el depurador
integrado de IDLE, debes activarlo mediante la opcién «Debug» en la barra de menu de la ventana principal de
IDLE. Es el punto de partida para la depuracion.

Las capturas de pantalla que ves al lado muestran el depurador IDLE durante una simple sesién de depuracién.

Puedes ver como el depurador visualiza las variables y los valores de los pardmetros. Observa la pila de
llamadas que muestra la cadena de invocaciones que van desde la funcién actualmente ejecutada hacia el
intérprete.

Si deseas saber mas sobre el depurador IDLE, consulta la documentacién IDLE.

Depuracion por impresion

Esta forma de depuracién, que se puede aplicar a tu cddigo mediante cualquier tipo de depurador, a veces se
denomina depuracidn interactiva. El significado del término se explica por si mismo: el proceso necesita su
interaccién (la del desarrollador) para que se lleve a cabo.

Algunas otras técnicas de depuracién se pueden utilizar para cazar errores. Es posible que no puedas o no
quieras usar un depurador (las razones pueden variar). ;Estas entonces indefenso? jAbsolutamente no!

Puedes utilizar una de las tacticas de depuracién mas simples y antiguas (pero aln Util) conocida como la
depuracion por impresion. El nombre habla por si mismo: simplemente insertas varias invocaciones print()
adicionales dentro de tu cddigo para generar datos que ilustran la ruta que tu cédigo estd negociando
actualmente. Puedes imprimir los valores de las variables que pueden afectar la ejecucidn.

Estas impresiones pueden generar texto significativo como «Estoy aqui», «Ingresé a la funcién foo()», «El
resultado es 0», o pueden contener secuencias de caracteres que solo tu puedes leer. Por favor, no uses
palabras obscenas o indecentes para ese propdsito, aunque puedas sentir una fuerte tentacion; tu reputacién
puede arruinarse en un momento si estas payasadas se filtran al publico.

Como puedes ver, este tipo de depuracién no es realmente interactiva en lo absoluto, o es interactiva solo en
pequeria medida, cuando decides aplicar la funcién input() para detener o retrasar la ejecucién del cédigo.

Una vez que se encuentran y eliminan los errores, las impresiones adicionales pueden comentarse o eliminarse;
tu decides. No permitas que se ejecuten en el cédigo final; pueden confundir tanto a los probadores como a los
usuarios, y traer mal karma sobre ti.

https://miguelangel.torresegea.es/wiki/ Printed on 13/12/2025 07:20

https://www.cs.uky.edu/~keen/help/debug-tutorial/debug.html
https://www.cs.uky.edu/~keen/help/debug-tutorial/debug.html

13/12/2025 07:20 9/15 Modulo 4: Excepciones

Algunos consejos utiles

Aqui hay algunos consejos que pueden ayudarte a encontrar y eliminar errores. Ninguno de ellos es definitivo.
Usalos de manera flexible y confia en tu intuicion. No te creas a ti mismo, comprueba todo dos veces.

1. Intenta decirle a alguien (por ejemplo, a tu amigo o compafiero de trabajo) qué es lo que se espera
que haga tu cddigo y cdmo se espera que se comporte. Se concreto y no omitas detalles. Responde todas
las preguntas que te hagan. Es probable que te des cuenta de la causa del problema mientras cuentas tu
historia, ya que el hablar activa esas partes de tu cerebro que permanecen inactivas mientras codificas.
Si ningiin humano puede ayudarte con el problema, usa un patito amarillo de goma en su lugar. No
estamos bromeando, consulta el articulo de Wikipedia para obtener mas informacién sobre esta técnica
de uso comun: Método de depuracion del patito de goma.

2. Intenta aislar el problema. Puedes extraer la parte de tu cddigo que se sospecha que es responsable
de tus problemas y ejecutarla por separado. Puedes comentar partes del céddigo para ocultar el problema.
Asigna valores concretos a las variables en lugar de leerlos desde la consola. Prueba tus funciones
aplicando valores de argumentos predecibles. Analiza el cddigo cuidadosamente. Léelo en voz alta.

3. Si el error aparecié recientemente y no habia aparecido antes, analiza todos los cambios que has
introducido en tu cédigo; uno de ellos puede ser la razon.

4. Tomate un descanso, bebe una taza de café, toma a tu perro y sal a caminar, lee un buen libro, incluso
dos, haz una llamada telefénica a tu mejor amigo; te sorprenderas de la frecuencia con la que esto
ayuda.

5. Se optimista: eventualmente encontraras el error; te lo prometemos.

Prueba unitaria: un nivel mas alto de codificacion

También existe una técnica de programacién importante y ampliamente utilizada que tendras que adoptar
tarde o temprano durante tu carrera de desarrollador: se llama prueba unitaria. El nombre puede ser un poco
confuso, ya que no se trata solo de probar el software, sino también (y, sobre todo) de cémo se escribe el
cédigo.

Para resumir la historia, las pruebas unitarias asumen que las pruebas son partes inseparables del cédigo y la
preparacién de los datos de prueba es una parte inseparable de la codificacién. Esto significa que cuando
escribes una funcién o un conjunto de funciones cooperativas, también estds obligado a crear un conjunto de
datos para los cuales el comportamiento de tu cédigo es predecible y conocido.

Ademads, debes equipar a tu cédigo con una interfaz que pueda ser utilizada por un entorno de pruebas
automatizado. En este enfoque, cualquier enmienda realizada al cédigo (incluso la menos significativa) debe ir
seguida de la ejecucién de todas las pruebas unitarias que acompafan al cédigo fuente.

Para estandarizar este enfoque y facilitar su aplicacién, Python proporciona un médulo dedicado llamado
unittest. No vamos a discutirlo aqui, es un tema amplio y complejo. Por lo tanto, hemos preparado un curso y
una ruta de certificacién independiente para este tema. Se llama «Python para pruebas», y ahora te invitamos a
participar en él.

Puntos Clave: Excepciones

1. En Python, existe una distincién entre dos tipos de errores:

* Errores de sintaxis (errores de analisis), que ocurren cuando el analizador encuentra una sentencia de
cédigo que no es correcta. Por ejemplo:

El intentar ejecutar la siguiente linea:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
21/06/2022
10:59

info:cursos:netacad:python:pelm4:excepciones https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4:excepciones

"Hola, iMundo!)

Provocara un error del tipo SyntaxError, y da como resultado el siguiente (o similar) mensaje que se muestra en
la consola:

File "main.py", line 1

print("Hola, iMundo!)

N

SyntaxError: EOL while scanning string literal

Presta atencién a la flecha: indica el lugar donde el analizador de Python ha tenido problemas. En este caso, la
doble comilla es la que falta. ;Lo notaste?

Excepciones, ocurren incluso cuando una sentencia o expresion es sintacticamente correcta. Estos son los
errores gque se detectan durante la ejecucién, cuando tu cddigo da como resultado un error que no es
incondicionalmente fatal. Por ejemplo: El intentar ejecutar la siguiente linea:

/

Provocara una excepcién ZeroDivisionError, y da como resultado el siguiente (o similar) mensaje que se
muestra en la consola:

Traceback (most recent call last):
File "main.py", line 1, in
print(1/0)
ZeroDivisionError: division by zero

Presta atencién a la Ultima linea del mensaje de error; en realidad, te dice lo que sucedid. Existen muchos
diferentes tipos de excepciones, como ZeroDivisionError, NameError, TypeError, y muchas mas; y esta parte del
mensaje te informa qué tipo de excepcién se ha generado. Las lineas anteriores muestran el contexto en el que
ha ocurrido la excepcidn.

2. Puedes «capturar» y manejar excepciones en Python usando el bloque try-except. Por lo tanto, si tienes la
sospecha de que cualquier fragmento de cédigo en particular puede generar una excepcién, puedes escribir el
cédigo que la manejara con elegancia y no interrumpira el programa. Observa el ejemplo:

True:

number = int(input("Ingresa un nlUmero entero:
number/

"Advertencia: el valor ingresado no es un numero valido. Intenta de
nuevo..."

El cédigo anterior le pide al usuario que ingrese un valor hasta que el valor ingresado sea un nimero entero
valido. Si el usuario ingresa un valor que no se puede convertir a un int, el programa imprimira en la consola
Advertencia: el valor ingresado no es un nimero vélido. Intenta de nuevo..., y pide al usuario que ingrese un
nimero nuevamente. Veamos que sucede en dicho caso.

1. El programa entra en el bucle while.
2. El bloque try se ejecuta y el usuario ingresa un valor incorrecto, por ejemplo: jhola!.
3. Se genera una excepcion y el resto del cddigo del bloque try se omite. El programa salta al bloque

https://miguelangel.torresegea.es/wiki/ Printed on 13/12/2025 07:20

13/12/2025 07:20 11/15 Modulo 4: Excepciones

except, lo ejecuta, y luego se sigue al cédigo que se encuentra después del blogque try-except. Si el
usuario ingresa un valor correcto y no se genera ninguna excepcién, las instrucciones subsiguientes al
bloque try, son ejecutadas. En este caso, los excepts no se ejecutan.

3. Puedes manejar multiples excepciones en tu bloque de cédigo. Analiza los siguientes ejemplos:
True:

number = int(input("Ingresa un nuUmero entero: "
/number

ValueError:
"Valor incorrecto."
ZeroDivisionError:
"Lo siento. No puedo dividir entre cero."

"No se que hacer..."

Puedes utilizar varios bloques except dentro de una sentencia try, y especificar nombres de excepciones. Si se
ejecuta alguno de los except, los otros se omitirdn. Recuerda: puedes especificar una excepcién integrada solo
una vez. Ademas, no olvides que la excepcidn por defecto (o genérica), es decir, a la que no se le especifica
nombre, debe ser colocada al final (utiliza las excepciones mas especificas primero, y las mas generales al
Gltimo).

También puedes especificar y manejar multiples excepciones integradas dentro de un solo blogue except:
True:

number = int(input("Ingresa un nuUmero entero: "
/number

ValueError, ZeroDivisionError
"Valor incorrecto o se ha roto la regla de divisidén entre cero."

"Lo siento, algo salié mal..."

4. Algunas de las excepciones integradas mas utiles de Python son: ZeroDivisionError, ValueError, TypeError,
AttributeError, y SyntaxError. Una excepcidn mas que, en nuestra opinidén, merece tu atencién es la excepcién
Keyboardinterrupt, que se genera cuando el usuario presiona la tecla de interrupcién (CTRL-C o Eliminar).
Ejecuta el cddigo anterior y presiona la combinacién de teclas para ver qué sucede.

Para obtener mas informacidn sobre las excepciones integradas de Python, consulta la documentacién oficial de
Python aqui.

5. Por Ultimo, pero no menos importante, debes recordar cémo probar y depurar tu cédigo. Utiliza técnicas de
depuracién como depuracién de impresion; si es posible, pide a alguien que lea tu cédigo y te ayude a
encontrar errores o mejorarlo; intenta aislar el fragmento de cddigo que es problematico y susceptible a errores,
prueba tus funciones aplicando valores de argumento predecibles, y trata de manejar las situaciones en las
gue alguien ingresa valores incorrectos; comenta las partes del cddigo que ocultan el problema. Finalmente,
toma descansos y vuelve a tu cédigo después de un tiempo con un par de 0jos nuevos.

ejercicio

Tu tarea es escribir un simple programa que simule jugar a tic-tac-toe (nombre en inglés) con el
usuario. Para hacerlo mas facil, hemos decidido simplificar el juego. Aqui estdn nuestras reglas:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
21/06/2022
10:59

info:cursos:netacad:python:pelm4:excepciones https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4:excepciones

¢ La maquina (por ejemplo, el programa) jugara utilizando las 'X's.

e El usuario (por ejemplo, tu) jugaras utilizando las 'O's.

¢ El primer movimiento es de la maquina: siempre coloca una 'X' en el centro del tablero.

¢ Todos los cuadros estan numerados comenzando con el 1 (observa el ejemplo para que tengas una
referencia).

e El usuario ingresa su movimiento introduciendo el nimero de cuadro elegido. El nUmero debe de ser
valido, por ejemplo un valor entero mayor que 0 y menor que 10, y no puede ser un cuadro que ya esté
ocupado.

¢ El programa verifica si el juego ha terminado. Existen cuatro posibles veredictos: el juego continua, el
juego termina en empate, tu ganas, o la maquina gana.

¢ La maquina responde con su movimiento y se verifica el estado del juego.

¢ No se debe implementar algln tipo de inteligencia artificial, la maquina elegird un cuadro de manera
aleatoria, eso es suficiente para este juego.

El ejemplo del programa es el siguiente:

+----- - +----- - +------- +
I I I I
[1r 1 2 | 3 |
I I | I
+--- - - +--- - +---m- - +
I I | I
4 | X | 6 |
I I | I
+--mm - - +-mmm - - R +
I I | I
7 1 8 [9 |
I I I I
+------- +------- +------- +
Ingresa tu movimiento: 1

+----- - +----- - +----- - +
I I I I
/o | 2 | 3 /|
I I | I
+o-mm - - +ommm - - R +
I I | I
|4 | X | 6 |
I I | I
+-mmm - - +--mm - - +ommm - - +
I I | I
7 1 8 | 9 |
I I | I
+------- +------- +------- +
+------- +------- +------- +
I I I I
/o | X | 3 |
I I | I
+------- +------- +------- +
I I I I
|4 | X | 6 |
I I | I
+--- - +o---- - +o--m- - +
I I | I
7 1 8 [9 |

https://miguelangel.torresegea.es/wiki/ Printed on 13/12/2025 07:20

Modulo 4: Excepciones

13/15

13/12/2025 07:20

s e P
Ingresa tu movimiento:

8

S S S S S S S S S S e e

I I
| 0 | X
I I

0

7

frocoooooifioosconoibons oo odp

oo}
0 X
s T T S e S

I I
4 1 X
I I

=dbo

B T S e
Ingresa tu movimiento:

(oSS S S S ST S S S

4

T =

I I
| 0 | X
I I

| I
I | X
I I

fhocoocooifieoocoooibons oo odp
X

dhccooccodicocccoodbons oo odh

I |
o I x |
I I

odbo

e

7 0
S S S S C S S S S S DS S e

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last

;[1)7(?;72:022 info:cursos:netacad:python:pelm4:excepciones https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4:excepciones

10:59

Ingresa tu movimiento: 7

+------- +------- +------- +
I | | I
| o | x | X |
I I | I
+------- +------- +------- +
I | I I
| o | X | X |
I I | I
+------- +------- +------- +
I I | I
/| o | 0o | 9 ||
I I | I
+ommm - e - R tommm - +
iHas Ganado!

Requerimientos

Implementa las siguientes caracteristicas:

¢ El tablero debe ser almacenado como una lista de tres elementos, mientras que cada elemento es otra
lista de tres elementos (la lista interna representa las filas) de manera que todos los cuadros puedas ser
accedidos empleado la siguiente sintaxis:

board[row] [column]

¢ Cada uno de los elementos internos de la lista puede contener 'O, 'X', 0 un digito representando el
nimero del cuadro (dicho cuadro se considera como libre).

¢ La apariencia de tablero debe de ser igual a la presentada en el ejemplo.

¢ Implementa las funciones definidas para ti en el editor.

Para obtener un valor numérico aleatorio se puede emplear una funcién integrada de Python denominada
randrange(). El siguiente ejemplo muestra como utilizarla (El programa imprime 10 nimeros aleatorios del 1 al
8).

Nota: La instruccién from-import provee acceso a la funcién randrange definida en un médulo externo de
Python denominado random.

random randrange

i range
randrange

DisplayBoard(board
La funcidén acepta un parametro el cual contiene el estado actual del tablero
y lo muestra en la consola.

EnterMove (board

La funcidn acepta el estado actual del tablero y pregunta al usuario acerca
de su movimiento,

verifica la entrada y actualiza el tablero acorde a la decisién del usuario.

MakeListOfFreeFields (board
La funcion examina el tablero y construye una lista de todos los cuadros

https://miguelangel.torresegea.es/wiki/ Printed on 13/12/2025 07:20

13/12/2025 07:20 15/15 Modulo 4: Excepciones

vacios.
La lista esta compuesta por tuplas, cada tupla es un par de numeros que
indican la fila y columna.

VictoryFor(board, sign
La funcidn analiza el estatus del tablero para verificar si
el jugador que utiliza las 'O's o las 'X's ha ganado el juego.

DrawMove (board
La funcion dibuja el movimiento de la maquina y actualiza el tablero.

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link

e
==

https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4:excepciones 2

Last update: 21/06/2022 10:59

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m4:excepciones

	Modulo 4: Excepciones
	Excepciones
	Cuando los datos no son lo que deberían ser
	El Código Python
	La excepción confirma la regla
	Cómo lidiar con más de una excepción
	Dos excepciones después de un try.

	La excepción por defecto y cómo usarla
	Algunas excepciones útiles
	ZeroDivisionError
	ValueError
	TypeError
	AttributeError
	SyntaxError

	Por qué no se puede evitar el probar tu código
	Rastreando las rutas de ejecución
	Cuando Python cierra sus ojos

	Pruebas y probadores
	Error frente a depuración (Bug vs. debug)
	Depuración por impresión
	Algunos consejos útiles
	Prueba unitaria: un nivel más alto de codificación

	Puntos Clave: Excepciones
	ejercicio
	Requerimientos

