14/02/2026 07:28 1/8 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

Modulo 4 - Funciones, Tuplas, Diccionarios,
Exceptiones y Procesamiento de Datos

Estructuracién de cédigo y el concepto de funcién.

Invocacién de funciones y devolucion de resultados de una funcion.
Alcance de nombres y sombreado de variables.

Tuplas y su propésito: construccién y uso de tuplas.

Diccionarios y su propdsito: construccién y uso de diccionarios.
Introduccidén a las excepciones en Python.

¢Por qué necesitamos funciones?

Hasta ahorita has implementado varias veces el uso de funciones, pero solo se han visto algunas de sus
ventajas. Solo se han invocado funciones para utilizarlas como herramientas, con el fin de hacer la vida mas
facil, y para simplificar tareas tediosas y repetitivas.

Cuando se desea mostrar o imprimir algo en consola se utiliza print(). Cuando se desea leer el valor de una
variable se emplea input(), combinados posiblemente con int() o float().

También se ha hecho uso de algunos métodos, los cuales también son funciones, pero declarados de una
manera muy especifica.

Ahora aprenderas a escribir tus propias funciones, y como utilizarlas. Escribiremos varias de ellas juntos, desde
muy sencillas hasta algo complejas. Se requerird de tu concentracién y atencion.

Muy a menudo ocurre que un cierto fragmento de cddigo se repite muchas veces en un programa. Se repite de
manera literal o, con algunas modificaciones menores, empleando algunas otras variables dentro del programa.
También ocurre que un programador ha comenzado a copiar y pegar ciertas partes del c6digo en mas de una
ocasién en el mismo programa.

Puede ser muy frustrante percatarse de repente que existe un error en el cédigo copiado. El programador
tendrd que escarbar bastante para encontrar todos los lugares en el cédigo donde hay que corregir el error.
Ademas, existe un gran riesgo de que las correcciones produzcan errores adicionales.

Definamos la primer condicién por la cual es una buena idea comenzar a escribir funciones propias: si un
fragmento de cédigo comienza a aparecer en mas de una ocasién, considera la posibilidad de aislarlo en la
forma de una funcién invocando la funcién desde el lugar en el que originalmente se encontraba.

Puede suceder que el algoritmo que se desea implementar sea tan complejo que el cédigo comience a crecer de
manera incontrolada y, de repente, ya no se puede navegar por él tan facilmente.

Se puede intentar solucionar este problema comentando el cédigo, pero pronto te dards cuenta que esto
empeorara la situacién - demasiados comentarios hacen que el cddigo sea mas dificil de leer y entender.
Algunos dicen que una funcién bien escrita debe ser comprensible con tan solo una mirada.

Un buen desarrollador divide el c6digo (o mejor dicho: el problema) en piezas aisladas, y codifica cada una de
ellas en la forma de una funcién.

Esto simplifica considerablemente el trabajo del programa, debido a que cada pieza se codifica por separado y
consecuentemente se prueba por separado. A este proceso se le llama cominmente descomposicidn.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
14/06/2022
12:33

info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655235237

Existe una segunda condicién: si un fragmento de cédigo se hace tan extenso que leerlo o entenderlo se hace
complicado, considera dividirlo pequefios problemas por separado e implementa cada uno de ellos como una
funcién independiente.

Esta descomposicion continla hasta que se obtiene un conjunto de funciones cortas, faciles de comprender y
probar.

[V4

Descomposicion

Es muy comdn que un programa sea tan largo y complejo que no puede ser asignado a un solo desarrollador, y
en su lugar un equipo de desarrolladores trabajaran en el. El problema, debe ser dividido entre varios
desarrolladores de una manera en que se pueda asegurar su eficiencia y cooperacion.

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 07:28

14/02/2026 07:28 3/8 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

Trabajo

- PYTHON

\

Es inconcebible que mas de un programador deba escribir el mismo cédigo al mismo tiempo, por lo tanto, el
trabajo debe de ser dividido entre todos los miembros del equipo.

Este tipo de descomposicidn tiene diferentes propdsitos, no solo se trata de compartir el trabajo, sino también
de compartir la responsabilidad entre varios desarrolladores.

Cada uno debe escribir un conjunto bien definido y claro de funciones, las cuales al ser combinadas dentro de
un maédulo (esto se clarificara un poco mas adelante) nos dara como resultado el producto final.

Esto nos lleva directamente a la tercera condicidn: si se va a dividir el trabajo entre varios programadores, se
debe descomponer el problema para permitir que el producto sea implementado como un conjunto
de funciones escritas por separado empacadas juntas en diferentes médulos.

¢De ddonde provienen las funciones?

En general, las funciones provienen de al menos tres lugares:

¢ De Python mismo: varias funciones (como print()) son una parte integral de Python, y siempre estan
disponibles sin algln esfuerzo adicional del programador; se les llama a estas funciones integradas.

¢ De los médulos preinstalados de Python: muchas de las funciones, las cuales cominmente son menos
utilizadas que las integradas, estan disponibles en médulos instalados juntamente con Python; para
poder utilizar estas funciones el programador debe realizar algunos pasos adicionales (se explicara
acerca de esto en un momento).

* Directamente del cédigo: tu puedes escribir tus propias funciones, colocarlas dentro del cédigo, y
usarlas libremente.

» Existe una posibilidad mas, pero se relaciona con clases, se omitird por ahora.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last

l{g?;é/ez:ozz info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655235237

12:33

Tu primera funcidn

Se necesita definirla. Aqui, la palabra definir es significativa.

As{ es como se ve la definicién mas simple de una funcién:

function name
function body

e Siempre comienza con la palabra reservada def (que significa definir).

e Después de def va el nombre de la funcién (las reglas para darle nombre a las funciones son las mismas
que para las variables).

e Después del nombre de la funcién, hay un espacio para un par de paréntesis (ahorita no contienen algo,
pero eso cambiard pronto).

¢ La linea debe de terminar con dos puntos.

¢ La linea inmediatamente después de def marca el comienzo del cuerpo de la funcién - donde varias o (al
menos una) instruccién anidada serd ejecutada cada vez que la funcidn sea invocada; nota: la funcién
termina donde el anidamiento termina, se debe ser cauteloso.

A continuacién se definird la funcién. Se llamard message:

def message
print("Ingresa un valor: "

Se ha modificado el cddigo, se ha insertado la invocacién de la funcién entre los dos mensajes:

message
"Ingresa un valor: "

"Se comienza aqui."

message
"Se termina aqui."

el funcionamiento de las funciones

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 07:28

14/02/2026 07:28 5/8 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

def message() :
print ("Ingresa siguiente valor ")

print ("Se comienza aqui')
message (!}
print ("Aquies el final ")

Intenta mostrarte el proceso completo:

e Cuando se invoca una funcién, Python recuerda el lugar donde esto ocurre y salta hacia dentro de la
funcién invocada.

¢ El cuerpo de la funcién es entonces ejecutado.

¢ Al llegar al final de la funcién, Python regresa al lugar inmediato después de donde ocurrié la invocacion.

Existen dos consideraciones muy importantes, la primera de ella es:
No se debe invocar una funcidn antes de que se haya definido.

Recuerda: Python lee el cddigo de arriba hacia abajo. No va a adelantarse en el cédigo para determinar si la
funcién invocada esta definida mas adelante, el lugar correcto para definirla es antes de ser invocada.

Una funcién y una variable no pueden compartir el mismo nombre.

El asignar un valor al nombre «message» causa que Python olvide su rol anterior. La funcién con el nombre de
message ya no estard disponible.

Afortunadamente, es posible combinar o mezclar el cédigo con las funciones - no es forzoso colocar todas las
funciones al inicio del archivo fuente.

Funciones parametrizadas

El potencial completo de una funcién se revela cuando puede ser equipada con una interface que es capaz de
aceptar datos provenientes de la invocacién. Dichos datos pueden modificar el comportamiento de la funcién,
haciéndola mas flexible y adaptable a condiciones cambiantes.

Un pardmetro es una variable, pero existen dos factores que hacen a un pardmetro diferente:

¢ Los parametros solo existen dentro de las funciones en donde han sido definidos, y el Unico
lugar donde un parametro puede ser definido es entre los paréntesis después del nombre de la funcién,
donde se encuentra la palabra reservada def.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
14/06/2022
12:33

info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655235237

¢ La asignacion de un valor a un parametro de una funcion se hace en el momento en que la
funcion se manda llamar o se invoca, especificando el argumento correspondiente.

function(parameter
i

Recuerda que:

* Los pardmetros solo existen dentro de las funciones (este es su entorno natural).

¢ Los argumentos existen fuera de las funciones, y son los que pasan los valores a los parametros
correspondientes.

o Especificar uno o0 mas parametros en la definicidn de la funcién es un requerimiento, y se debe de
cumplir durante la invocacién de la misma. Se debe proveer el mismo nimero de argumentos como haya
pardmetros definidos.

Existe una circunstancia importante que se debe mencionar.
Es posible tener una variable con el mismo nombre del pardmetro de la funcién.

El siguiente cédigo muestra un ejemplo de esto:

message (number
"Ingresa un numero:", number

number
message
number

Una situacion como la anterior, activa un mecanismo denominado sombreado:

¢ El pardmetro x sombrea cualquier variable con el mismo nombre, pero...
e ... solo dentro de la funcién que define el parametro.

El pardmetro llamado number es una entidad completamente diferente de la variable llamada number.
Una funcién puede tener tantos parametros como se desee, pero entre mas parametros, es mas dificil

memorizar su rol y propésito.

Paso de parametros posicionales

La técnica que asigna cada argumento al pardmetro correspondiente, es llamada paso de parametros
posicionales, los argumentos pasados de esta manera son llamados argumentos posicionales.

Paso de argumentos con palabra clave

Python ofrece otra manera de pasar argumentos, donde el significado del argumento esta definido por su
nombre, no su posicién, a esto se le denomina paso de argumentos con palabra clave.

Observa el siguiente cddigo:

introduction(first name, last name
"Hola, mi nombre es", first name, last name

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 07:28

14/02/2026 07:28 7/8 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

introduction(first name “James", last name “Bond"
introduction(last name "Skywalker", first name "Luke"

El concepto es claro: los valores pasados a los parametros son precedidos por el nombre del pardmetro al que
se le va a pasar el valor, seguido por el signo de =.

La posicidn no es relevante aqui, cada argumento conoce su destino con base en el nombre utilizado.
Debes de poder predecir la salida. Ejecuta el cédigo y verifica tu respuesta.
Por supuesto que no se debe de utilizar el nombre de un parametro que no existe.

El siguiente cédigo provocara un error de ejecucion:

introduction(first name, last name
"Hola, mi nombre es", first name, last name

introduction(surname="Skywalker", first name="Luke"
Esto es lo que Python arrojara:

TypeError: introduction() got an unexpected keyword argument 'surname'’

Combinar argumentos posicionales y de palabra clave

Es posible combinar ambos tipos si se desea, solo hay una regla inquebrantable: se deben colocar primero los
argumentos posicionales y después los de palabra clave.

adding(a, b, ¢

a II+II b II+II c II=II a + b + C
adding #1+2+3=6
adding(c a b #2+3+1=6
adding C b #3+2+1=6

¢ El argumento (3) para el pardmetro a es pasado utilizando la forma posicional.
e Los argumentos para c y b son especificados con palabras clave.

adding a b # ERROR

Funciones parametrizadas: mas detalles

En ocasiones ocurre que algunos valores de ciertos argumentos son mas utilizados que otros. Dichos
argumentos tienen valores predefinidos los cuales pueden ser considerados cuando los argumentos
correspondientes han sido omitidos.

Uno de los apellidos mas comunes en Latinoamérica es Gonzalez. Tomémoslo para el ejemplo.

El valor por default para el pardmetro se asigna de la siguiente manera:

introduction(first name, last name-"Gonzalez"
"Hola, mi nombre es", first name, last name

Solo se tiene que colocar el nombre del pardmetro seguido del signo de =y el valor por default.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
14/06/2022
12:33

info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655235237

Invoquemos la funcién de manera normal:

introduction("Jorge", "Pérez") # Hola, mi nombre es Jorge Pérez.

No parece haber cambiado algo, pero cuando se invoca la funcién de una manera inusual, como esta:
introduction("Enrique") # Hola, mi nombre es Enrique Gonzalez

0 asf:

introduction(first name="Guillermo") # Hola, mi nombre es Guillermo Gonzalez

Es importante recordar que primero se especifican los argumentos posicionales y después los de
palabras clave. Es por esa razén que si se intenta ejecutar el siguiente cédigo:

subtra(a, b
a-b

subtra b # salida: 3
subtral(a # Syntax Error

add numbers(a, b C
a+b+c

add numbers(a C # SyntaxError - a non-default argument (c) follows a default
argument (b=2)

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655235237

Last update: 14/06/2022 12:33

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 07:28

https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m4?rev=1655235237

	Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos
	¿Por qué necesitamos funciones?
	Descomposición
	¿De dónde provienen las funciones?
	Tu primera función
	el funcionamiento de las funciones
	Funciones parametrizadas
	Paso de parámetros posicionales
	Paso de argumentos con palabra clave
	Combinar argumentos posicionales y de palabra clave
	Funciones parametrizadas: más detalles

