
14/02/2026 07:28 1/8 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Modulo 4 - Funciones, Tuplas, Diccionarios,
Exceptiones y Procesamiento de Datos

Estructuración de código y el concepto de función.
Invocación de funciones y devolución de resultados de una función.
Alcance de nombres y sombreado de variables.
Tuplas y su propósito: construcción y uso de tuplas.
Diccionarios y su propósito: construcción y uso de diccionarios.
Introducción a las excepciones en Python.

¿Por qué necesitamos funciones?

Hasta ahorita has implementado varias veces el uso de funciones, pero solo se han visto algunas de sus
ventajas. Solo se han invocado funciones para utilizarlas como herramientas, con el fin de hacer la vida más
fácil, y para simplificar tareas tediosas y repetitivas.

Cuando se desea mostrar o imprimir algo en consola se utiliza print(). Cuando se desea leer el valor de una
variable se emplea input(), combinados posiblemente con int() o float().

También se ha hecho uso de algunos métodos, los cuales también son funciones, pero declarados de una
manera muy específica.

Ahora aprenderás a escribir tus propias funciones, y como utilizarlas. Escribiremos varias de ellas juntos, desde
muy sencillas hasta algo complejas. Se requerirá de tu concentración y atención.

Muy a menudo ocurre que un cierto fragmento de código se repite muchas veces en un programa. Se repite de
manera literal o, con algunas modificaciones menores, empleando algunas otras variables dentro del programa.
También ocurre que un programador ha comenzado a copiar y pegar ciertas partes del código en más de una
ocasión en el mismo programa.

Puede ser muy frustrante percatarse de repente que existe un error en el código copiado. El programador
tendrá que escarbar bastante para encontrar todos los lugares en el código donde hay que corregir el error.
Además, existe un gran riesgo de que las correcciones produzcan errores adicionales.

Definamos la primer condición por la cual es una buena idea comenzar a escribir funciones propias: si un
fragmento de código comienza a aparecer en más de una ocasión, considera la posibilidad de aislarlo en la
forma de una función invocando la función desde el lugar en el que originalmente se encontraba.

Puede suceder que el algoritmo que se desea implementar sea tan complejo que el código comience a crecer de
manera incontrolada y, de repente, ya no se puede navegar por él tan fácilmente.

Se puede intentar solucionar este problema comentando el código, pero pronto te darás cuenta que esto
empeorará la situación - demasiados comentarios hacen que el código sea más difícil de leer y entender.
Algunos dicen que una función bien escrita debe ser comprensible con tan solo una mirada.

Un buen desarrollador divide el código (o mejor dicho: el problema) en piezas aisladas, y codifica cada una de
ellas en la forma de una función.

Esto simplifica considerablemente el trabajo del programa, debido a que cada pieza se codifica por separado y
consecuentemente se prueba por separado. A este proceso se le llama comúnmente descomposición.

Last
update:
14/06/2022
12:33

info:cursos:netacad:python:pe1m4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m4?rev=1655235237

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 07:28

Existe una segunda condición: si un fragmento de código se hace tan extenso que leerlo o entenderlo se hace
complicado, considera dividirlo pequeños problemas por separado e implementa cada uno de ellos como una
función independiente.

Esta descomposición continúa hasta que se obtiene un conjunto de funciones cortas, fáciles de comprender y
probar.

Descomposición

Es muy común que un programa sea tan largo y complejo que no puede ser asignado a un solo desarrollador, y
en su lugar un equipo de desarrolladores trabajarán en el. El problema, debe ser dividido entre varios
desarrolladores de una manera en que se pueda asegurar su eficiencia y cooperación.

14/02/2026 07:28 3/8 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Es inconcebible que más de un programador deba escribir el mismo código al mismo tiempo, por lo tanto, el
trabajo debe de ser dividido entre todos los miembros del equipo.

Este tipo de descomposición tiene diferentes propósitos, no solo se trata de compartir el trabajo, sino también
de compartir la responsabilidad entre varios desarrolladores.

Cada uno debe escribir un conjunto bien definido y claro de funciones, las cuales al ser combinadas dentro de
un módulo (esto se clarificara un poco más adelante) nos dará como resultado el producto final.

Esto nos lleva directamente a la tercera condición: si se va a dividir el trabajo entre varios programadores, se
debe descomponer el problema para permitir que el producto sea implementado como un conjunto
de funciones escritas por separado empacadas juntas en diferentes módulos.

¿De dónde provienen las funciones?

En general, las funciones provienen de al menos tres lugares:

De Python mismo: varias funciones (como print()) son una parte integral de Python, y siempre están
disponibles sin algún esfuerzo adicional del programador; se les llama a estas funciones integradas.
De los módulos preinstalados de Python: muchas de las funciones, las cuales comúnmente son menos
utilizadas que las integradas, están disponibles en módulos instalados juntamente con Python; para
poder utilizar estas funciones el programador debe realizar algunos pasos adicionales (se explicará
acerca de esto en un momento).
Directamente del código: tu puedes escribir tus propias funciones, colocarlas dentro del código, y
usarlas libremente.
Existe una posibilidad más, pero se relaciona con clases, se omitirá por ahora.

Last
update:
14/06/2022
12:33

info:cursos:netacad:python:pe1m4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m4?rev=1655235237

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 07:28

Tu primera función

Se necesita definirla. Aquí, la palabra definir es significativa.

Así es como se ve la definición más simple de una función:

def function_name():
 function_body

Siempre comienza con la palabra reservada def (que significa definir).
Después de def va el nombre de la función (las reglas para darle nombre a las funciones son las mismas
que para las variables).
Después del nombre de la función, hay un espacio para un par de paréntesis (ahorita no contienen algo,
pero eso cambiará pronto).
La línea debe de terminar con dos puntos.
La línea inmediatamente después de def marca el comienzo del cuerpo de la función - donde varias o (al
menos una) instrucción anidada será ejecutada cada vez que la función sea invocada; nota: la función
termina donde el anidamiento termina, se debe ser cauteloso.

A continuación se definirá la función. Se llamará message:

def message():
 print("Ingresa un valor: ")

Se ha modificado el código, se ha insertado la invocación de la función entre los dos mensajes:

def message():
 print("Ingresa un valor: ")

print("Se comienza aquí.")
message()
print("Se termina aquí.")

el funcionamiento de las funciones

14/02/2026 07:28 5/8 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Intenta mostrarte el proceso completo:

Cuando se invoca una función, Python recuerda el lugar donde esto ocurre y salta hacia dentro de la
función invocada.
El cuerpo de la función es entonces ejecutado.
Al llegar al final de la función, Python regresa al lugar inmediato después de donde ocurrió la invocación.

Existen dos consideraciones muy importantes, la primera de ella es:

No se debe invocar una función antes de que se haya definido.

Recuerda: Python lee el código de arriba hacia abajo. No va a adelantarse en el código para determinar si la
función invocada está definida más adelante, el lugar correcto para definirla es antes de ser invocada.

Una función y una variable no pueden compartir el mismo nombre.

El asignar un valor al nombre «message» causa que Python olvide su rol anterior. La función con el nombre de
message ya no estará disponible.

Afortunadamente, es posible combinar o mezclar el código con las funciones - no es forzoso colocar todas las
funciones al inicio del archivo fuente.

Funciones parametrizadas

El potencial completo de una función se revela cuando puede ser equipada con una interface que es capaz de
aceptar datos provenientes de la invocación. Dichos datos pueden modificar el comportamiento de la función,
haciéndola más flexible y adaptable a condiciones cambiantes.

Un parámetro es una variable, pero existen dos factores que hacen a un parámetro diferente:

Los parámetros solo existen dentro de las funciones en donde han sido definidos, y el único
lugar donde un parámetro puede ser definido es entre los paréntesis después del nombre de la función,
donde se encuentra la palabra reservada def.

Last
update:
14/06/2022
12:33

info:cursos:netacad:python:pe1m4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m4?rev=1655235237

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 07:28

La asignación de un valor a un parámetro de una función se hace en el momento en que la
función se manda llamar o se invoca, especificando el argumento correspondiente.

def function(parameter):
 ###

Recuerda que:

Los parámetros solo existen dentro de las funciones (este es su entorno natural).
Los argumentos existen fuera de las funciones, y son los que pasan los valores a los parámetros
correspondientes.
Especificar uno o más parámetros en la definición de la función es un requerimiento, y se debe de
cumplir durante la invocación de la misma. Se debe proveer el mismo número de argumentos como haya
parámetros definidos.

Existe una circunstancia importante que se debe mencionar.

Es posible tener una variable con el mismo nombre del parámetro de la función.

El siguiente código muestra un ejemplo de esto:

def message(number):
 print("Ingresa un número:", number)

number = 1234
message(1)
print(number)

Una situación como la anterior, activa un mecanismo denominado sombreado:

El parámetro x sombrea cualquier variable con el mismo nombre, pero…
… solo dentro de la función que define el parámetro.

El parámetro llamado number es una entidad completamente diferente de la variable llamada number.

Una función puede tener tantos parámetros como se desee, pero entre más parámetros, es más difícil
memorizar su rol y propósito.

Paso de parámetros posicionales

La técnica que asigna cada argumento al parámetro correspondiente, es llamada paso de parámetros
posicionales, los argumentos pasados de esta manera son llamados argumentos posicionales.

Paso de argumentos con palabra clave

Python ofrece otra manera de pasar argumentos, donde el significado del argumento está definido por su
nombre, no su posición, a esto se le denomina paso de argumentos con palabra clave.

Observa el siguiente código:

def introduction(first_name, last_name):
 print("Hola, mi nombre es", first_name, last_name)

14/02/2026 07:28 7/8 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

introduction(first_name = "James", last_name = "Bond")
introduction(last_name = "Skywalker", first_name = "Luke")

El concepto es claro: los valores pasados a los parámetros son precedidos por el nombre del parámetro al que
se le va a pasar el valor, seguido por el signo de =.

La posición no es relevante aquí, cada argumento conoce su destino con base en el nombre utilizado.

Debes de poder predecir la salida. Ejecuta el código y verifica tu respuesta.

Por supuesto que no se debe de utilizar el nombre de un parámetro que no existe.

El siguiente código provocará un error de ejecución:

def introduction(first_name, last_name):
 print("Hola, mi nombre es", first_name, last_name)

introduction(surname="Skywalker", first_name="Luke")

Esto es lo que Python arrojará:

TypeError: introduction() got an unexpected keyword argument 'surname'

Combinar argumentos posicionales y de palabra clave

Es posible combinar ambos tipos si se desea, solo hay una regla inquebrantable: se deben colocar primero los
argumentos posicionales y después los de palabra clave.

def adding(a, b, c):
 print(a, "+", b, "+", c, "=", a + b + c)

adding(1, 2, 3) # 1 + 2 + 3 = 6
adding(c = 1, a = 2, b = 3) # 2 + 3 + 1 = 6
adding(3, c = 1, b = 2) # 3 + 2 + 1 = 6

El argumento (3) para el parámetro a es pasado utilizando la forma posicional.
Los argumentos para c y b son especificados con palabras clave.

adding(3, a = 1, b = 2) # ERROR

Funciones parametrizadas: más detalles

En ocasiones ocurre que algunos valores de ciertos argumentos son más utilizados que otros. Dichos
argumentos tienen valores predefinidos los cuales pueden ser considerados cuando los argumentos
correspondientes han sido omitidos.

Uno de los apellidos más comunes en Latinoamérica es González. Tomémoslo para el ejemplo.

El valor por default para el parámetro se asigna de la siguiente manera:

def introduction(first_name, last_name="González"):
 print("Hola, mi nombre es", first_name, last_name)

Solo se tiene que colocar el nombre del parámetro seguido del signo de = y el valor por default.

Last
update:
14/06/2022
12:33

info:cursos:netacad:python:pe1m4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m4?rev=1655235237

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 07:28

Invoquemos la función de manera normal:

introduction("Jorge", "Pérez") # Hola, mi nombre es Jorge Pérez.

No parece haber cambiado algo, pero cuando se invoca la función de una manera inusual, como esta:

introduction("Enrique") # Hola, mi nombre es Enrique González

o así:

introduction(first_name="Guillermo") # Hola, mi nombre es Guillermo González

Es importante recordar que primero se especifican los argumentos posicionales y después los de
palabras clave. Es por esa razón que si se intenta ejecutar el siguiente código:

def subtra(a, b):
 print(a - b)

subtra(5, b=2) # salida: 3
subtra(a=5, 2) # Syntax Error

def add_numbers(a, b=2, c):
 print(a + b + c)

add_numbers(a=1, c=3) # SyntaxError - a non-default argument (c) follows a default
argument (b=2)

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m4?rev=1655235237

Last update: 14/06/2022 12:33

https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m4?rev=1655235237

	Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos
	¿Por qué necesitamos funciones?
	Descomposición
	¿De dónde provienen las funciones?
	Tu primera función
	el funcionamiento de las funciones
	Funciones parametrizadas
	Paso de parámetros posicionales
	Paso de argumentos con palabra clave
	Combinar argumentos posicionales y de palabra clave
	Funciones parametrizadas: más detalles

