15/02/2026 06:00 1/28 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

Modulo 4 - Funciones, Tuplas, Diccionarios,
Exceptiones y Procesamiento de Datos

Estructuracién de cédigo y el concepto de funcién.

Invocacién de funciones y devolucion de resultados de una funcion.
Alcance de nombres y sombreado de variables.

Tuplas y su propésito: construccién y uso de tuplas.

Diccionarios y su propdsito: construccién y uso de diccionarios.
Introduccidén a las excepciones en Python.

¢Por qué necesitamos funciones?

Hasta ahorita has implementado varias veces el uso de funciones, pero solo se han visto algunas de sus
ventajas. Solo se han invocado funciones para utilizarlas como herramientas, con el fin de hacer la vida mas
facil, y para simplificar tareas tediosas y repetitivas.

Cuando se desea mostrar o imprimir algo en consola se utiliza print(). Cuando se desea leer el valor de una
variable se emplea input(), combinados posiblemente con int() o float().

También se ha hecho uso de algunos métodos, los cuales también son funciones, pero declarados de una
manera muy especifica.

Ahora aprenderas a escribir tus propias funciones, y como utilizarlas. Escribiremos varias de ellas juntos, desde
muy sencillas hasta algo complejas. Se requerird de tu concentracién y atencion.

Muy a menudo ocurre que un cierto fragmento de cddigo se repite muchas veces en un programa. Se repite de
manera literal o, con algunas modificaciones menores, empleando algunas otras variables dentro del programa.
También ocurre que un programador ha comenzado a copiar y pegar ciertas partes del c6digo en mas de una
ocasién en el mismo programa.

Puede ser muy frustrante percatarse de repente que existe un error en el cédigo copiado. El programador
tendrd que escarbar bastante para encontrar todos los lugares en el cédigo donde hay que corregir el error.
Ademas, existe un gran riesgo de que las correcciones produzcan errores adicionales.

Definamos la primer condicién por la cual es una buena idea comenzar a escribir funciones propias: si un
fragmento de cédigo comienza a aparecer en mas de una ocasién, considera la posibilidad de aislarlo en la
forma de una funcién invocando la funcién desde el lugar en el que originalmente se encontraba.

Puede suceder que el algoritmo que se desea implementar sea tan complejo que el cédigo comience a crecer de
manera incontrolada y, de repente, ya no se puede navegar por él tan facilmente.

Se puede intentar solucionar este problema comentando el cédigo, pero pronto te dards cuenta que esto
empeorara la situacién - demasiados comentarios hacen que el cddigo sea mas dificil de leer y entender.
Algunos dicen que una funcién bien escrita debe ser comprensible con tan solo una mirada.

Un buen desarrollador divide el c6digo (o mejor dicho: el problema) en piezas aisladas, y codifica cada una de
ellas en la forma de una funcién.

Esto simplifica considerablemente el trabajo del programa, debido a que cada pieza se codifica por separado y
consecuentemente se prueba por separado. A este proceso se le llama cominmente descomposicidn.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
16/06/2022
12:37

info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655408272

Existe una segunda condicién: si un fragmento de cédigo se hace tan extenso que leerlo o entenderlo se hace
complicado, considera dividirlo pequefios problemas por separado e implementa cada uno de ellos como una
funcién independiente.

Esta descomposicion continla hasta que se obtiene un conjunto de funciones cortas, faciles de comprender y
probar.

[V4

Descomposicion

Es muy comdn que un programa sea tan largo y complejo que no puede ser asignado a un solo desarrollador, y
en su lugar un equipo de desarrolladores trabajaran en el. El problema, debe ser dividido entre varios
desarrolladores de una manera en que se pueda asegurar su eficiencia y cooperacion.

https://miguelangel.torresegea.es/wiki/ Printed on 15/02/2026 06:00

15/02/2026 06:00 3/28 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

Trabajo

- PYTHON

\

Es inconcebible que mas de un programador deba escribir el mismo cédigo al mismo tiempo, por lo tanto, el
trabajo debe de ser dividido entre todos los miembros del equipo.

Este tipo de descomposicidn tiene diferentes propdsitos, no solo se trata de compartir el trabajo, sino también
de compartir la responsabilidad entre varios desarrolladores.

Cada uno debe escribir un conjunto bien definido y claro de funciones, las cuales al ser combinadas dentro de
un maédulo (esto se clarificara un poco mas adelante) nos dara como resultado el producto final.

Esto nos lleva directamente a la tercera condicidn: si se va a dividir el trabajo entre varios programadores, se
debe descomponer el problema para permitir que el producto sea implementado como un conjunto
de funciones escritas por separado empacadas juntas en diferentes médulos.

¢De ddonde provienen las funciones?

En general, las funciones provienen de al menos tres lugares:

¢ De Python mismo: varias funciones (como print()) son una parte integral de Python, y siempre estan
disponibles sin algln esfuerzo adicional del programador; se les llama a estas funciones integradas.

¢ De los médulos preinstalados de Python: muchas de las funciones, las cuales cominmente son menos
utilizadas que las integradas, estan disponibles en médulos instalados juntamente con Python; para
poder utilizar estas funciones el programador debe realizar algunos pasos adicionales (se explicara
acerca de esto en un momento).

* Directamente del cédigo: tu puedes escribir tus propias funciones, colocarlas dentro del cédigo, y
usarlas libremente.

» Existe una posibilidad mas, pero se relaciona con clases, se omitird por ahora.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last

l{g?;é/ez:ozz info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655408272

12:37

Tu primera funcidn

Se necesita definirla. Aqui, la palabra definir es significativa.

As{ es como se ve la definicién mas simple de una funcién:

function name
function body

e Siempre comienza con la palabra reservada def (que significa definir).

e Después de def va el nombre de la funcién (las reglas para darle nombre a las funciones son las mismas
que para las variables).

e Después del nombre de la funcién, hay un espacio para un par de paréntesis (ahorita no contienen algo,
pero eso cambiard pronto).

¢ La linea debe de terminar con dos puntos.

¢ La linea inmediatamente después de def marca el comienzo del cuerpo de la funcién - donde varias o (al
menos una) instruccién anidada serd ejecutada cada vez que la funcidn sea invocada; nota: la funcién
termina donde el anidamiento termina, se debe ser cauteloso.

A continuacién se definird la funcién. Se llamard message:

def message
print("Ingresa un valor: "

Se ha modificado el cddigo, se ha insertado la invocacién de la funcién entre los dos mensajes:

message
"Ingresa un valor: "

"Se comienza aqui."

message
"Se termina aqui."

el funcionamiento de las funciones

https://miguelangel.torresegea.es/wiki/ Printed on 15/02/2026 06:00

15/02/2026 06:00 5/28 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

def message() :
print ("Ingresa siguiente valor ")

print ("Se comienza aqui')
message (!}
print ("Aquies el final ")

Intenta mostrarte el proceso completo:

e Cuando se invoca una funcién, Python recuerda el lugar donde esto ocurre y salta hacia dentro de la
funcién invocada.

¢ El cuerpo de la funcién es entonces ejecutado.

¢ Al llegar al final de la funcién, Python regresa al lugar inmediato después de donde ocurrié la invocacion.

Existen dos consideraciones muy importantes, la primera de ella es:
No se debe invocar una funcidn antes de que se haya definido.

Recuerda: Python lee el cddigo de arriba hacia abajo. No va a adelantarse en el cédigo para determinar si la
funcién invocada esta definida mas adelante, el lugar correcto para definirla es antes de ser invocada.

Una funcién y una variable no pueden compartir el mismo nombre.

El asignar un valor al nombre «message» causa que Python olvide su rol anterior. La funcién con el nombre de
message ya no estard disponible.

Afortunadamente, es posible combinar o mezclar el cédigo con las funciones - no es forzoso colocar todas las
funciones al inicio del archivo fuente.

Funciones parametrizadas

El potencial completo de una funcién se revela cuando puede ser equipada con una interface que es capaz de
aceptar datos provenientes de la invocacién. Dichos datos pueden modificar el comportamiento de la funcién,
haciéndola mas flexible y adaptable a condiciones cambiantes.

Un pardmetro es una variable, pero existen dos factores que hacen a un pardmetro diferente:

¢ Los parametros solo existen dentro de las funciones en donde han sido definidos, y el Unico
lugar donde un parametro puede ser definido es entre los paréntesis después del nombre de la funcién,
donde se encuentra la palabra reservada def.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
16/06/2022
12:37

info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655408272

¢ La asignacion de un valor a un parametro de una funcion se hace en el momento en que la
funcion se manda llamar o se invoca, especificando el argumento correspondiente.

function(parameter
i

Recuerda que:

* Los pardmetros solo existen dentro de las funciones (este es su entorno natural).

¢ Los argumentos existen fuera de las funciones, y son los que pasan los valores a los parametros
correspondientes.

o Especificar uno o0 mas parametros en la definicidn de la funcién es un requerimiento, y se debe de
cumplir durante la invocacién de la misma. Se debe proveer el mismo nimero de argumentos como haya
pardmetros definidos.

Existe una circunstancia importante que se debe mencionar.
Es posible tener una variable con el mismo nombre del pardmetro de la funcién.

El siguiente cédigo muestra un ejemplo de esto:

message (number
"Ingresa un numero:", number

number
message
number

Una situacion como la anterior, activa un mecanismo denominado sombreado:

¢ El pardmetro x sombrea cualquier variable con el mismo nombre, pero...
e ... solo dentro de la funcién que define el parametro.

El pardmetro llamado number es una entidad completamente diferente de la variable llamada number.
Una funcién puede tener tantos parametros como se desee, pero entre mas parametros, es mas dificil

memorizar su rol y propésito.

Paso de parametros posicionales

La técnica que asigna cada argumento al pardmetro correspondiente, es llamada paso de parametros
posicionales, los argumentos pasados de esta manera son llamados argumentos posicionales.

Paso de argumentos con palabra clave

Python ofrece otra manera de pasar argumentos, donde el significado del argumento esta definido por su
nombre, no su posicién, a esto se le denomina paso de argumentos con palabra clave.

Observa el siguiente cddigo:

introduction(first name, last name
"Hola, mi nombre es", first name, last name

https://miguelangel.torresegea.es/wiki/ Printed on 15/02/2026 06:00

15/02/2026 06:00 7/28 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

introduction(first name “James", last name “Bond"
introduction(last name "Skywalker", first name "Luke"

El concepto es claro: los valores pasados a los parametros son precedidos por el nombre del pardmetro al que
se le va a pasar el valor, seguido por el signo de =.

La posicidn no es relevante aqui, cada argumento conoce su destino con base en el nombre utilizado.
Debes de poder predecir la salida. Ejecuta el cédigo y verifica tu respuesta.
Por supuesto que no se debe de utilizar el nombre de un parametro que no existe.

El siguiente cédigo provocara un error de ejecucion:

introduction(first name, last name
"Hola, mi nombre es", first name, last name

introduction(surname="Skywalker", first name="Luke"
Esto es lo que Python arrojara:

TypeError: introduction() got an unexpected keyword argument 'surname'’

Combinar argumentos posicionales y de palabra clave

Es posible combinar ambos tipos si se desea, solo hay una regla inquebrantable: se deben colocar primero los
argumentos posicionales y después los de palabra clave.

adding(a, b, ¢

a II+II b II+II c II=II a + b + C
adding #1+2+3=6
adding(c a b #2+3+1=6
adding C b #3+2+1=6

¢ El argumento (3) para el pardmetro a es pasado utilizando la forma posicional.
e Los argumentos para c y b son especificados con palabras clave.

adding a b # ERROR

Funciones parametrizadas: mas detalles

En ocasiones ocurre que algunos valores de ciertos argumentos son mas utilizados que otros. Dichos
argumentos tienen valores predefinidos los cuales pueden ser considerados cuando los argumentos
correspondientes han sido omitidos.

Uno de los apellidos mas comunes en Latinoamérica es Gonzalez. Tomémoslo para el ejemplo.

El valor por default para el pardmetro se asigna de la siguiente manera:

introduction(first name, last name-"Gonzalez"
"Hola, mi nombre es", first name, last name

Solo se tiene que colocar el nombre del pardmetro seguido del signo de =y el valor por default.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
16/06/2022
12:37

info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655408272

Invoquemos la funcién de manera normal:

introduction("Jorge", "Pérez") # Hola, mi nombre es Jorge Pérez.

No parece haber cambiado algo, pero cuando se invoca la funcién de una manera inusual, como esta:
introduction("Enrique") # Hola, mi nombre es Enrique Gonzalez

0 asf:

introduction(first name="Guillermo") # Hola, mi nombre es Guillermo Gonzalez

Es importante recordar que primero se especifican los argumentos posicionales y después los de
palabras clave. Es por esa razén que si se intenta ejecutar el siguiente cédigo:

subtra(a, b
a-b

subtra b # salida: 3
subtral(a # Syntax Error

add numbers(a, b C
a+b+c

add numbers(a C # SyntaxError - a non-default argument (c) follows a default
argument (b=2)

Efectos y resultados: la instruccion return

Para lograr que las funciones devuelvan un valor (pero no solo para ese propdsito) se utiliza la instruccién return
(regresar o retornar).

Esta palabra nos da una idea completa de sus capacidades. Nota: es una palabra clave reservada de Python.

La instruccién return tiene dos variantes diferentes: considerémoslas por separado.
return sin una expresion

La primera consiste en la palabra reservada en si, sin nada que la siga.

Cuando se emplea dentro de una funcién, provoca la terminacién inmediata de la ejecucién de la funcién, y un
retorno instantdneo (de ahi el nombre) al punto de invocacién.

Nota: si una funcién no estd destinada a producir un resultado, emplear la instruccién returnno es obligatorio, se
ejecutara implicitamente al final de la funcién.

De cualquier manera, se puede emplear para terminar las actividades de una funcién, antes de que el control
llegue a la Ultima linea de la funcién.

Consideremos la siguiente funcién:

happy new year(wishes True

https://miguelangel.torresegea.es/wiki/ Printed on 15/02/2026 06:00

15/02/2026 06:00 9/28 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

“Tres..."

"Dos..."

"Uno..."

wishes:

"iFeliz ano nuevo!"
Cuando se invoca sin ningln argumento:
happy new year
La funcién produce un poco de ruido; la salida se vera ast:
Tres...
Dos. ..
Uno. ..
iFeliz afo nuevo!
Al proporcionar False como argumento:

happy new year(False

Se modificard el comportamiento de la funcién; la instruccién return provocara su terminacién justo antes de los
deseos. Esta es la salida actualizada:

Tres...

Dos...
Uno. ..

return con una expresion

La segunda variante de return estd extendida con una expresion:

function
expression

Existen dos consecuencias de usarla:
¢ Provoca la terminacién inmediata de la ejecucién de la funcién (nada nuevo en comparacién con la
primer variante).

e Ademas, la funcién evaluard el valor de la expresion y lo devolvera (de ahi el nombre una vez mas) como
el resultado de la funcion.

Si, este ejemplo es sencillo:

boring function

x = boring function
"La funcién boring function ha devuelto su resultado. Es:", x

El fragmento de cédigo escribe el siguiente texto en la consola:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last

l{g?;é/ez:ozz info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655408272

12:37

La funcién boring function ha devuelto su resultado. Es: 123

def boring function():
return 13

x = boring function()

La instrucciéon return, enriquecida con la expresién (la expresiéon es muy simple aqui), «transporta» el valor de
la expresién al lugar donde se ha invocado la funcion.

El resultado se puede usar libremente aqui, por ejemplo, para ser asignado a una variable.
También puede ignorarse por completo y perderse sin dejar rastro.

Ten en cuenta que no estamos siendo muy educados aqui: la funcién devuelve un valor y lo ignoramos (no lo
usamos de ninguna manera):

boring function
"'Modo aburrimiento' ON."
123

"iEsta leccidn es interesante!"
boring function
"Esta leccidn es aburrida..."

El programa produce el siguiente resultado:

iEsta leccidn es interesante!
'Modo aburrimiento' ON.
Esta leccidn es aburrida...

No olvides:

* Siempre se te permite ignorar el resultado de la funcién y estar satisfecho con el efecto de la funcién (si

la funcién tiene alguno).
¢ Si una funcién intenta devolver un resultado Util, debe contener la segunda variante de la instruccién

return.

https://miguelangel.torresegea.es/wiki/ Printed on 15/02/2026 06:00

15/02/2026 06:00 11/28 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

Unas pocas palabras acerca de None

Permitenos presentarte un valor muy curioso (para ser honestos, un valor que es ninguno) llamado None.

Sus datos no representan valor razonable alguno; en realidad, no es un valor en lo absoluto; por lo tanto, no
debe participar en ninguna expresion.

Por ejemplo, un fragmento de cédigo como el siguiente:

None +
Causard un error de tiempo de ejecucidn, descrito por el siguiente mensaje de diagndstico:
TypeError: unsupported operand type(s +: 'NoneType' ‘int'

Nota: None es una palabra clave reservada.
Solo existen dos tipos de circunstancias en las que None se puede usar de manera segura:

e Cuando se le asigna a una variable (o se devuelve como el resultado de una funcién).
e Cuando se compara con una variable para diagnosticar su estado interno.

Al igual que aqui:
value None
value None:

"Lo siento, no contienes ningun valor"

No olvides esto: si una funcién no devuelve un cierto valor utilizando una cldusula de expresion return, se
asume que devuelve implicitamente None.

Efectos y resultados: listas y funciones
¢Se puede enviar una lista a una funcién como un argumento?

iPor supuesto que se puede! Cualquier entidad reconocible por Python puede desempefiar el papel de un
argumento de funcién, aunque debes asegurarte de que la funcién sea capaz de hacer uso de él.

Entonces, si pasas una lista a una funcién, la funcién tiene que manejarla como una lista.
¢Puede una lista ser el resultado de una funcion?

iSi, por supuesto! Cualquier entidad reconocible por Python puede ser un resultado de funcién.
ejercicio

Tu tarea es escribir y probar una funcién que toma un argumento (un afio) y devuelve
True si el afno es un afo bisiesto, o False si no lo es.

Parte del esqueleto de la funcién ya estd en el editor.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last

Tg;j(?Gt/ez:OZZ info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655408272

12:37

Nota: también hemos preparado un breve cdédigo de prueba, que puedes utilizar para
probar tu funcidn.

El cdédigo utiliza dos listas: una con los datos de prueba y la otra con los
resultados esperados. El cddigo te dira si alguno de tus resultados no es valido.

is year leap(year

year :
year % : retorno False
year % : retorno True
year % : retorno = False

retorno True

retorno False

retorno
test data
test results False, True, True, False
i range(len(test data

yr = test datali
yr II_>II end nmn
result is year leap(yr
result test results|i
IIOKII

"Fallido"
ejercicio

Tu tarea es escribir y probar una funcién que toma dos argumentos (un afio y un mes)
y devuelve el nimero de dias del mes/afio dado (mientras que solo febrero es
sensible al valor year, tu funcién deberia ser universal).

La parte inicial de la funcién estd lista. Ahora, haz que la funcidén devuelva None
si los argumentos no tienen sentido.

Por supuesto, puedes (y debes) utilizar la funcién previamente escrita y probada
(LABORATORIO 4.1.3.6). Puede ser muy (til. Te recomendamos que utilices una lista
con los meses. Puedes crearla dentro de la funcién; este truco acortara
significativamente el cédigo.

Hemos preparado un cédigo de prueba. Amplialo para incluir mds casos de prueba.

is year leap(year

year :
year % : retorno = False
year % : retorno True
year % : retorno False

retorno True

retorno False

https://miguelangel.torresegea.es/wiki/ Printed on 15/02/2026 06:00

15/02/2026 06:00 13/28 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

retorno

days in month(year, month

dias
is year leap(year
dias
dias[month-
test years

test months

test results
i range(len(test years
yr = test years|i
mo = test months|[i

yr mo II_>II end nn
result = days in month(yr, mo
result test results|i
IIOKII
"Fallido"

ejercicio

Tu tarea es escribir y probar una funcién que toma tres argumentos (un afio, un mes
y un dia del mes) y devuelve el dia correspondiente del afio, o devuelve None si
cualquiera de los argumentos no es vdalido.

Debes utilizar las funciones previamente escritas y probadas. Agrega algunos casos
de prueba al cddigo. Esta prueba es solo el comienzo.

Las funciones y sus alcances

Comencemos con una definicidn:

El alcance de un nombre (por ejemplo, el nombre de una variable) es la parte del cédigo donde el nombre es
reconocido correctamente.

Por ejemplo, el alcance del pardmetro de una funcién es la funcién en si. El parametro es inaccesible fuera de la
funcion.

scope test
X

scope test
X
NameError: name 'x' is not defined

Comencemos revisando si una variable creada fuera de una funcion es visible dentro de una funcion. En otras
palabras, ;El nombre de la variable se propaga dentro del cuerpo de la funcién?

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
16/06/2022
12:37

info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655408272

my function
"¢Conozco a la variable?", var

var
my function
var

El resultado de la prueba es positivo, el cddigo da como salida:

¢Conozco a la variable? 1
1

La respuesta es: una variable que existe fuera de una funcién tiene alcance dentro del cuerpo de la funcién.
Esta regla tiene una excepcién muy importante. Intentemos encontrarla.

Hagamos un pequefio cambio al cédigo:

my function

var
"¢Conozco a la variable?", var
var
my function
var

El resultado ha cambiado también, el cédigo arroja una salida con una ligera diferencia:

¢Conozco a la variable? 2
1

:Qué es lo que ocurrié?

¢ La variable var creada dentro de la funcién no es la misma que la que se definié fuera de ella, parece ser
que hay dos variables diferentes con el mismo nombre.
¢ La variable de la funcién es una sombra de la variable fuera de la funcién.

La regla anterior se puede definir de una manera mas precisa y adecuada:

Una variable que existe fuera de una funcion tiene un alcance dentro del cuerpo de la funcion,
excluyendo a aquellas que tienen el mismo nombre.

También significa que el alcance de una variable existente fuera de una funcion solo se puede
implementar dentro de una funcién cuando su valor es leido. El asignar un valor hace que la funcién cree
Su propia variable.

Las funciones y sus alcances: la palabra clave reservada global

Al llegar a este punto, debemos hacernos la siguiente pregunta: ;Una funcién es capaz de modificar una
variable que fue definida fuera de ella? Esto seria muy incomodo.

https://miguelangel.torresegea.es/wiki/ Printed on 15/02/2026 06:00

15/02/2026 06:00 15/28 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

Afortunadamente, la respuesta es no.

Existe un método especial en Python el cual puede extender el alcance de una variable incluyendo el
cuerpo de las funciones para poder no solo leer los valores de las variables sino también modificarlos.

Este efecto es causado por la palabra clave reservada llamada global:

name
namel, name2

El utilizar la palabra reservada dentro de una funcién con el nombre o nombres de las variables separados por
comas, obliga a Python a abstenerse de crear una nueva variable dentro de la funcién; se empleara la que se
puede acceder desde el exterior.

En otras palabras, este nombre se convierte en global (tiene un alcance global, y no importa si se esta
leyendo o asignando un valor).

my function

var
var
"é¢Conozco a aquella variable?", var
var
my function
var

Se ha agregado la palabra global a la funcién.

El cédigo ahora da como salida:

éConozco a aquella variable? 2
2

Como interactua la funcion con sus argumentos

Ahora descubramos como la funcién interactda con sus argumentos.

El cédigo en el editor nos ensefia algo. Como puedes observar, la funcién cambia el valor de su parametro.
iEste cambio afecta el argumento?

my function(n
"Yo recibi", n

n +
"Ahora tengo", n
var
my function(var
var

La salida del cédigo es

Yo recibi 1

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
16/06/2022
12:37

info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655408272

Ahora tengo 2
1

La conclusién es obvia - al cambiar el valor del parametro este no se propaga fuera de la funcién (mas

especificamente, no cuando la variable es un valor escalar, como en el ejemplo).

Esto también significa que una funcién recibe el valor del argumento, no el argumento en si. Esto es cierto

para los valores escalares.

Vale la pena revisar cdmo funciona esto con las listas (;Recuerdas las peculiaridades de asignar rebanadas de

listas en lugar de asignar la lista entera?)

El siguiente ejemplo arrojara luz sobre el asunto:

my function(my list 1
“Print #1:", my list 1
"Print #2:", my list 2
my list 1
“Print #3:", my list 1
"Print #4:", my list 2

my list 2
my function(my list 2
"Print #5:", my list 2

La salida del cédigo es

Print #1: [2, 3]
Print #2: [2, 3]
Print #3: [0, 1]
Print #4: [2, 3]
Print #5: [2, 3]

Parece ser que se sigue aplicando la misma regla.

Finalmente, la diferencia se puede observar en el siguiente ejemplo:

my function(my list 1
"Print #1:", my list 1
“Print #2:", my list 2

my list 1 # Presta atencidon a esta linea.

"Print #3:", my list 1
"Print #4:", my list 2

my list 2
my function(my list 2
"Print #5:", my list 2

No se modifica el valor del pardmetro

my list 1

(ya se sabe que no afectard el argumento), en lugar de ello se modificara la lista identificada por el.

https://miguelangel.torresegea.es/wiki/

Printed on 15/02/2026 06:00

15/02/2026 06:00 17/28 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

El resultado puede ser sorprendente. Ejecuta el cédigo y verificalo:

Print #1: [2, 3]
Print #2: [2, 3]
Print #3: [3]
Print #4: [3]
Print #5: [3]

iLo puedes explicar?
Intentémoslo:

¢ Si el argumento es una lista, el cambiar el valor del parametro correspondiente no afecta la lista
(Recuerda: las variables que contienen listas son almacenadas de manera diferente que las escalares).

¢ Pero si se modifica la lista identificada por el pardmetro (Nota: jLa lista, no el pardmetro!), la lista
reflejara el cambio.

Algunas funcione simples: recursividad

Este termino puede describir muchos conceptos distintos, pero uno de ellos, hace referencia a la programacién
computacional.

Aqui, la recursividad es una técnica donde una funcién se invoca a si misma.
Tanto el factorial como la serie Fibonacci, son las mejores opciones para ilustrar este fenémeno.

La serie de Fibonacci es un claro ejemplo de recursividad. Ya te dijimos que:

fib(n
n
None

elem 1 = elem 2
the sum
i range n + :
the sum = elem 1 + elem 2
elem 1, elem 2 = elem 2, the sum
the sum

n range : # probando
n, "->", fib(n
(Puede ser empleado en el cédigo? Por supuesto que puede. Puede hacer el cddigo mas corto y claro.
La segunda versién de la funcién fib() hace uso directo de la recursividad:
fib(n

n
None

fib(n - + fib(n -

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last

Tg?(?Gt/ez:OZZ info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655408272

12:37

El cddigo es mucho mas claro ahora.
i Pero es realmente seguro?, ;Implica algin riesgo?

Si, existe algo de riesgo. Si no se considera una condicién que detenga las invocaciones recursivas, el programa
puede entrar en un bucle infinito. Se debe ser cuidadoso.

El factorial también tiene un lado recursivo. Observa:

n! =1x2x3x ,.. xn-1xn
Es obvio que:
l1x2x3x%x ... %xn-1=(n-1)!

Entonces, finalmente, el resultado es:
n! = (n-1)! x n
Esto se empleard en nuestra nueva solucion.

factorial function(n
n
None

n * factorial function(n -

Tipos de secuencias y mutabilidad

Antes de comenzar a hablar acerca de tuplas y diccionarios, se deben introducir dos conceptos importantes:
tipos de secuencia y mutabilidad.

Un tipo de secuencia es un tipo de dato en Python el cual es capaz de almacenar mas de un valor (o
ninguno si la secuencia esta vacia), los cuales pueden ser secuencialmente (de ahi el nombre)
examinados, elemento por elemento.

Debido a que el bucle for es una herramienta especialmente disefiada para iterar a través de las secuencias,
podemos definirlas de la siguiente manera: una secuencia es un tipo de dato que puede ser escaneado
por el bucle for.

Hasta ahora, has trabajado con una secuencia en Python, la lista. La lista es un clasico ejemplo de una
secuencia de Python. Aunque existen otras secuencias dignas de mencionar, las cuales se presentaran a
continuacién.

La segunda nocién - la mutabilidad - es una propiedad de cualquier tipo de dato en Python que describe su
disponibilidad para poder cambiar libremente durante la ejecucién de un programa. Existen dos tipos de datos
en Python: mutables e inmutables.

Los datos mutables pueden ser actualizados libremente en cualquier momento, a esta operacién se le
denomina «in situ».

In situ es una expresién en Latin que se traduce literalmente como en posicién, en el lugar o momento. Por

https://miguelangel.torresegea.es/wiki/ Printed on 15/02/2026 06:00

15/02/2026 06:00 19/28 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

ejemplo, la siguiente instrucciéon modifica los datos «in situ»:
list.append

Los datos inmutables no pueden ser modificados de esta manera.

Imagina que una lista solo puede ser asignada y leida. No podrias adjuntar ni remover un elemento de la lista. Si
se agrega un elemento al final de la lista provocaria que la lista se cree desde cero.

Se tendria que crear una lista completamente nueva, la cual contenga los elementos ya existentes mas el
nuevo elemento.

El tipo de datos que se desea tratar ahora se llama tupla. Una tupla es una secuencia inmutable. Se puede
comportar como una lista pero no puede ser modificada en el momento.

¢Qué es una tupla?

Lo primero que distingue una lista de una tupla es la sintaxis empleada para crearlas. Las tuplas utilizan
paréntesis, mientras que las listas usan corchetes, aunque también es posible crear una tupla tan solo
separando los valores por comas.

Observa el ejemplo:

tuple 1
tuple 2

Se definieron dos tuplas, ambas contienen cuatro elementos.
A continuacién se imprimen en consola:

tuple 1
tuple 2

tuple 1
tuple 2

Esto es lo que se muestra en consola:

(1, 2, 4, 8)
(1.0, 0.5, 0.25, 0.125)

Nota: cada elemento de una tupla puede ser de distinto tipo (punto flotante, entero, cadena, o cualquier
otro tipo de dato).

¢COmo crear una tupla?

¢Es posible crear una tupla vacia? Si, solo se necesitan unos paréntesis:
empty tuple

Si se desea crear una tupla de un solo elemento, se debe de considerar el hecho de que, debido a la sintaxis
(una tupla debe de poder distinguirse de un valor entero ordinario), se debe de colocar una coma al final:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
16/06/2022
12:37

info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655408272

one_element tuple 1
one element tuple 2

El quitar las comas no arruinara el programa en el sentido sintactico, pero seran dos variables, no tuplas.

¢Como utilizar un tupla?

Si deseas leer los elementos de una tupla, lo puedes hacer de la misma manera que se hace con las listas.
my tuple

my tuple
my tuplel-
my tuple
my tuplel:-

elem my tuple:
elem

El programa debe de generar la siguiente salida, ejecitalo y comprueba:

1

1000

(10, 100, 1000)
(1, 10)

1

10

100

1000

Las similitudes pueden ser engafiosas - no intentes modificar el contenido de la tupla jNo es una lista!
Todas estas instrucciones (con excepcién de primera) causaran un error de ejecucion.

:Qué mas pueden hacer las tuplas?

La funcién len() acepta tuplas, y regresa el nimero de elementos contenidos dentro.
El operador + puede unir tuplas (ya se ha mostrado esto antes).

El operador * puede multiplicar las tuplas, asi como las listas.

Los operadores in y not in funcionan de la misma manera que en las listas.

my tuple

tl = my tuple +
t2 my tuple *

len(t2
tl
t2
my tuple
- my tuple

https://miguelangel.torresegea.es/wiki/ Printed on 15/02/2026 06:00

15/02/2026 06:00 21/28 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

La salida es la siguiente:

9

(1, 10, 100, 1000, 10000)

(1, 10, 100, 1, 10, 100, 1, 10, 100)
True

True

Una de las propiedades de las tuplas mas Utiles es que pueden aparecer en el lado izquierdo del operador
de asignacion. Este fendmeno ya se vio con anterioridad, cuando fue necesario encontrar una manera de
intercambiar los valores entre dos variables.

Observa el siguiente fragmento de cédigo:
var

tl
t2
t3 var

tl, t2, t3 t2, t3, tl
tl, t2, t3

Muestra tres tuplas interactuando en efecto, los valores almacenados en ellas «circulan» entre ellas. t1 se
convierte en t2, t2 se convierte en t3, y t3 se convierte en t1.

Nota: el ejemplo presenta un importante hecho mas: los elementos de una tupla pueden ser variables, no
solo literales. Ademads, pueden ser expresiones si se encuentran en el lado derecho del operador de asignacién.

¢Qué es un diccionario?

El diccionario es otro tipo de estructura de datos de Python. No es una secuencia (pero puede adaptarse
facilmente a un procesamiento secuencial) y ademas es mutable.

Para explicar lo que es un diccionario en Python, es importante comprender de manera literal lo que es un
diccionario.

Un diccionario en Python funciona de la misma manera que un diccionario bilingiie. Por ejemplo, se tiene la
palabra en espafiol «gato» y se necesita su equivalente en francés. Lo que se haria es buscar en el diccionario
para encontrar la palabra «gato». Eventualmente la encontrards, y sabras que la palabra equivalente en francés
es «chat».

En el mundo de Python, la palabra que se esta buscando se denomina clave(key). La palabra que se obtiene
del diccionario es denominada valor.

Esto significa que un diccionario es un conjunto de pares de claves y valores. Nota:

» Cada clave debe de ser Unica. No es posible tener una clave duplicada.

¢ Una clave puede ser un tipo de dato de cualquier tipo: puede ser un nimero (entero o flotante), o incluso
una cadena.

¢ Un diccionario no es una lista. Una lista contiene un conjunto de valores numerados, mientras que un
diccionario almacena pares de valores.

e La funcidn len() aplica también para los diccionarios, regresa la cantidad de pares (clave-valor) en el
diccionario.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
16/06/2022
12:37

info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655408272

¢ Un diccionario es una herramienta de un solo sentido. Si fuese un diccionario espafiol-francés, podriamos
buscar en espafiol para encontrar su contraparte en francés mas no viceversa.

¢Como crear un diccionario?

Si deseas asignar algunos pares iniciales a un diccionario, utiliza la siguiente sintaxis:

dictionary "gato" : "chat", "perro" : "chien", "caballo" : "cheval"
phone numbers 'jefe': 'Suzy':
empty dictionary

dictionary
phone_numbers
empty dictionary

En este primer ejemplo, el diccionario emplea claves y valores las cuales ambas son cadenas. En el segundo, las
claves con cadenas pero los valores son enteros. El orden inverso (claves - nimeros, valores - cadenas)
también es posible, asi como la combinacién niimero a nimero.

La lista de todos los pares es encerrada con llaves, mientras que los pares son separados por comas, y las
claves y valores por dos puntos.

El primer diccionario es muy simple, es un diccionario Espafol-Francés. El segundo es un directorio telefénico
muy pequeno.

Los diccionarios vacios son construidos por un par vacio de llaves - nada inusual.

El diccionario entero se puede imprimir con una invocacién a la funcién print(). El fragmento de cédigo puede
producir la siguiente salida:

{'perro': 'chien', 'caballo': 'cheval', 'gato': 'chat'}
{'Suzy': 5557654321, 'jefe': 5551234567}
{}

(Has notado que el orden de los pares impresos es diferente a la asignacién inicial?, ;Qué significa esto?

Primeramente, recordemos que los diccionarios no son listas - no guardan el orden de sus datos, el orden no
tiene significado (a diferencia de los diccionarios reales). El orden en que un diccionario almacena sus datos
esta fuera de nuestro control. Esto es normal. (*)

NOTA: En Python 3.6x los diccionarios se han convertido en colecciones ordenadas de manera predeterminada.
Tu resultado puede variar dependiendo en la versidn de Python que se este utilizando.

¢Como utilizar un diccionario?

Si deseas obtener cualquiera de los valores, debes de proporcionar una clave vélida:

dictionary/| 'gato’
phone numbers|'Suzy'

El obtener el valor de un diccionario es semejante a la indexacién, gracias a los corchetes alrededor del valor de

https://miguelangel.torresegea.es/wiki/ Printed on 15/02/2026 06:00

15/02/2026 06:00 23/28 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

la clave.
Nota:

¢ Si una clave es una cadena, se tiene que especificar como una cadena.
¢ Las claves son sensibles a las mayusculas y minUsculas: 'Suzy' seria diferente a 'suzy'.

El fragmento de cédigo da las siguientes salidas:

chat
5557654321

Ahora algo muy importante: No se puede utilizar una clave que no exista. Hacer algo como lo siguiente:
phone numbers|'presidente’

Provocard un error de ejecucién. Inténtalo.

Afortunadamente, existe una manera simple de evitar dicha situacién. El operador in, junto con su
acompanfante, not in, pueden salvarnos de esta situacion.

El siguiente cédigo busca de manera segura palabras en francés:

dictionary "gato" : "chat", "perro" : "chien", "caballo" : "cheval"
words 'gato', 'ledn', 'caballo'

word words:
word dictionary:
word, "->", dictionary|[word

word, "no esta en el diccionario"
La salida del cédigo es la siguiente:
gato -> chat
ledén no estd en el diccionario
caballo -> cheval
Nota: Cuando escribes una expresion grande o larga, puede ser una buena idea mantenerla alineada

verticalmente. Asi es como puede hacer que el cédigo sea mas legible y mas amigable para el programador, por
ejemplo:

Ejemplo 1:
dictionary
"gato": "chat"
"perro": "chien"
"caballo": "cheval"
Ejemplo 2:
phone numbers ‘jefe':
'Suzy':

Este tipo de formato se llama sangria francesa.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
16/06/2022
12:37

info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655408272

¢Como utilizar un diccionario? El método keys()

¢Pueden los diccionarios ser examinados utilizando el bucle for, como las listas o tuplas?
No y si.
No, porque un diccionario no es un tipo de dato secuencial - el bucle for no es (til aqui.

Si, porque hay herramientas simples y muy efectivas que pueden adaptar cualquier diccionario a los
requerimientos del bucle for (en otras palabras, se construye un enlace intermedio entre el diccionario y
una entidad secuencial temporal).

El primero de ellos es un método denominado keys(), el cual es parte de todo diccionario. El método retorna o
regresa una lista de todas las claves dentro del diccionario. Al tener una lista de claves se puede acceder a todo
el diccionario de una manera facil y Gtil.

A continuacién se muestra un ejemplo:

dictionary "gato" : "chat", "perro" : "chien", "caballo" : "cheval"
key dictionary.keys
key, "->", dictionary|key

El codigo produce la siguiente salida:
gato -> chat

perro -> chien
caballo -> cheval

La funcion sorted()

iDeseas que la salida este ordenada? Solo hay que agregar al bucle for lo siguiente:
key sorted (dictionary.keys

La funcién sorted() hara su mejor esfuerzo y la salida sera la siguiente:

caballo -> cheval

gato -> chat
perro -> chien

¢Como utilizar un diccionario? Los métodos item() y values()

Otra manera de hacerlo es utilizar el método items(). Este método regresa una lista de tuplas (este es el
primer ejemplo en el que las tuplas son mas que un ejemplo de si mismas) donde cada tupla es un par de
cada clave con su valor.

Asi es como funciona:

dictionary "gato" : "chat", "perro" : "chien", "caballo" : "cheval"

https://miguelangel.torresegea.es/wiki/ Printed on 15/02/2026 06:00

15/02/2026 06:00 25/28 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

index, value dictionary.items
index, "->", value

Nota la manera en que la tupla ha sido utilizada como una variable del bucle for.

El ejemplo imprime lo siguiente:

gato -> chat
perro -> chien
caballo -> cheval

También existe un método denominado values(), funciona de manera muy similar al de keys(), pero regresa
una lista de valores.

Este es un ejemplo sencillo:
dictionary "gato" : "chat", "perro" : "chien", "caballo" : "cheval"

value dictionary.values
value

Como el diccionario no es capaz de automaticamente encontrar la clave de un valor dado, el rol de este método
es algo limitado.

Esta es la salida esperada:

chat
chien
cheval

¢Como utilizar un diccionario? Modificar, agregar y eliminar
valores

El asignar un nuevo valor a una clave existente es sencillo, debido a que los diccionarios son completamente
mutables, no existen obstaculos para modificarlos.

Se va a reemplazar el valor «chat» por «minou», lo cual no es muy adecuado, pero funcionara con nuestro
ejemplo.

dictionary ‘gato': 'minou', 'perro': 'chien', 'caballo': 'cheval'
dictionary| 'gato’ 'minou’
dictionary
La salida es:
{'gato': 'minou', 'dog': 'chien', ‘'caballo': 'cheval'}

Agregando nuevas claves

El agregar una nueva clave con su valor a un diccionario es tan simple como cambiar un valor. Solo se tiene que

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
16/06/2022
12:37

info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655408272

asignar un valor a una nueva clave que no haya existido antes.

Nota: este es un comportamiento muy diferente comparado a las listas, las cuales no permiten asignar valores a
indices no existentes.

A continuacién se agrega un par nuevo al diccionario, un poco extrafio pero valido:

dictionary "gato" : "chat", "perro" : "chien", "caballo" : "cheval"
dictionary/'cisne' 'cygne'
dictionary

El ejemplo muestra como salida:
{'gato': 'chat', 'perro': 'chien', 'caballo': 'cheval', 'cisne': 'cygne'}

Note: También es posible insertar un elemento al diccionario utilizando el método update(), por ejemplo:

dictionary "gato" : "chat", "perro" : "chien", "caballo" : "cheval"
dictionary.update({"pato": "canard"
dictionary

Eliminado una clave

iPuedes deducir como eliminar una clave de un diccionario?

Nota: al eliminar la clave también se removera el valor asociado. Los valores no pueden existir sin sus
claves.

Esto se logra con la instruccién del.

A continuacién un ejemplo:
dictionary "gato" : "chat", "perro" : "chien", "caballo" : "cheval"

dictionary/| 'perro’
dictionary

Nota: el eliminar una clave no existente, provocara un error.

El ejemplo da como salida

{'gato': 'chat', 'caballo': 'cheval'}

EXTRA

Para eliminar el ultimo elemento de la lista, se puede emplear el método popitem():

dictionary "gato" : "chat", "perro" : "chien", "caballo" : "cheval"

https://miguelangel.torresegea.es/wiki/ Printed on 15/02/2026 06:00

15/02/2026 06:00 27/28 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

dictionary.popitem
dictionary # salida: {'gato': 'chat', 'perro': ‘'chien'}

En versiones anteriores de Python, por ejemplo, antes de la 3.6.7, el método popitem() elimina un elemento al
azar del diccionario.

Las tuplas y los diccionarios pueden trabajar juntos

Se ha preparado un ejemplo sencillo, mostrando como las tuplas y los diccionarios pueden trabajar juntos.
Imaginemos el siguiente problema:

Necesitas un programa para calcular los promedios de tus alumnos. El programa pide el nombre del alumno
seguido de su calificacién. Los nombres son ingresados en cualquier orden. El ingresar un nombre vacio finaliza
el ingreso de los datos (nota 1: ingresar una puntuacion vacia generara la excepcion ValueError, pero no te
preocupes por eso ahora, veras como manejar tales casos cuando hablemos de excepciones en el segundo
parte de la serie del curso). Una lista con todos los nombre y el promedio de cada alumno debe ser mostrada al
final.

school class = {}

while True:
name = input("Ingresa el nombre del estudiante: ")
if name == '":
break
score = int(input("Ingresa la calificacién del estudiante (0-10): "))
if score not in range(0, 11):
break
if name in school class:
school class[name] += (score,)
else:
school class[name] = (score,)
for name in sorted(school class.keys()):
adding = 0
counter = 0
for score in school class[name]:
adding += score
counter +=1
print(name, ":", adding / counter)

Ahora se analizard linea por linea:

e Linea 1: crea un diccionario vacio para ingresar los datos: el nombre del alumno es empleado como
clave, mientras que todas las calificaciones asociadas son almacenadas en una tupla (la tupla puede ser
el valor de un diccionario, esto no es un problema).

e Linea 3: se ingresa a un bucle «infinito» (no te preocupes, saldrémos de el en el momento indicado).

¢ Linea 4: se lee el nombre del alumno aqui.

e Linea 5-6: si el nombre es una cadena vacia (), salimos del bucle.

e Linea 8: se pide la calificacion del estudiante (un valor entero en el rango del 1-10).

e Linea 9-10: si la puntuacién ingresada no estd dentro del rango de 0 a 10, se abandona el bucle.

e Linea 12-13: si el nombre del estudiante ya se encuentra en el diccionario, se alarga la tupla asociada

con la nueva calificacién (observa el operador + -El .

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
16/06/2022
12:37

info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655408272

¢ Linea 14-15: si el estudiante es nuevo (desconocido para el diccionario), se crea una entrada nueva, su
valor es una tupla de un solo elemento la cual contiene la calificacién ingresada.

¢ Linea 17: se itera a través de los nombres ordenados de los estudiantes.

e Linea 18-19: inicializa los datos necesarios para calcular el promedio (sum y counter).

e Linea 20-22: se itera a través de la tupla, tomado todas las calificaciones subsecuentes y actualizando la
suma junto con el contador

e Linea 23: se calcula e imprime el promedio del alumno junto con su nombre.

Este es un ejemplo del programa:

Ingresa el nombre del estudiante: Bob

Ingresa la calificacién del estudiante (0-10): 7
Ingresa el nombre del estudiante: Andy

Ingresa la calificacién del estudiante (0-10): 3
Ingresa el nombre del estudiante: Bob

Ingresa la calificacién del estudiante (0-10): 2
Ingresa el nombre del estudiante: Andy

Ingresa la calificacién del estudiante (0-10): 10
Ingresa el nombre del estudiante: Andy

Ingresa la calificacién del estudiante (0-10): 3
Ingresa el nombre del estudiante: Bob

Ingresa la calificacién del estudiante (0-10): 9
Ingresa el nombre del estudiante:

Andy : 5.333333333333333

Bob : 6.0

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:

https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655408272 =
]

Last update: 16/06/2022 12:37 [=]

https://miguelangel.torresegea.es/wiki/ Printed on 15/02/2026 06:00

https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m4?rev=1655408272

	Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos
	¿Por qué necesitamos funciones?
	Descomposición
	¿De dónde provienen las funciones?
	Tu primera función
	el funcionamiento de las funciones
	Funciones parametrizadas
	Paso de parámetros posicionales
	Paso de argumentos con palabra clave
	Combinar argumentos posicionales y de palabra clave
	Funciones parametrizadas: más detalles
	Efectos y resultados: la instrucción return
	return sin una expresión
	return con una expresión

	Unas pocas palabras acerca de None
	Efectos y resultados: listas y funciones
	¿Se puede enviar una lista a una función como un argumento?
	¿Puede una lista ser el resultado de una función?

	ejercicio
	ejercicio
	ejercicio

	Las funciones y sus alcances
	Las funciones y sus alcances: la palabra clave reservada global
	Como interactúa la función con sus argumentos
	Algunas funcione simples: recursividad
	Tipos de secuencias y mutabilidad
	¿Qué es una tupla?
	¿Cómo crear una tupla?
	¿Cómo utilizar un tupla?
	¿Qué es un diccionario?
	¿Cómo crear un diccionario?
	¿Cómo utilizar un diccionario?
	¿Cómo utilizar un diccionario? El método keys()
	La función sorted()
	¿Cómo utilizar un diccionario? Los métodos item() y values()
	¿Cómo utilizar un diccionario? Modificar, agregar y eliminar valores
	Agregando nuevas claves
	Eliminado una clave
	EXTRA

	Las tuplas y los diccionarios pueden trabajar juntos

