14/02/2026 07:28 1/18 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

Modulo 4 - Funciones, Tuplas, Diccionarios,
Exceptiones y Procesamiento de Datos

Modulo 4: Funciones
o Estructuracién de cédigo y el concepto de funcion.
o Invocacién de funciones y devolucién de resultados de una funcion.
o Alcance de nombres y sombreado de variables.
Tuplas y su propdsito: construccién y uso de tuplas.
e Diccionarios y su propdsito: construccién y uso de diccionarios.
Introduccién a las excepciones en Python.

Tipos de secuencias y mutabilidad

Antes de comenzar a hablar acerca de tuplas y diccionarios, se deben introducir dos conceptos importantes:
tipos de secuencia y mutabilidad.

Un tipo de secuencia es un tipo de dato en Python el cual es capaz de almacenar mas de un valor (o
ninguno si la secuencia esta vacia), los cuales pueden ser secuencialmente (de ahi el nombre)
examinados, elemento por elemento.

Debido a que el bucle for es una herramienta especialmente disefiada para iterar a través de las secuencias,
podemos definirlas de la siguiente manera: una secuencia es un tipo de dato que puede ser escaneado
por el bucle for.

Hasta ahora, has trabajado con una secuencia en Python, la lista. La lista es un clasico ejemplo de una
secuencia de Python. Aunque existen otras secuencias dignas de mencionar, las cuales se presentaran a
continuacién.

La segunda nocién - la mutabilidad - es una propiedad de cualquier tipo de dato en Python que describe su
disponibilidad para poder cambiar libremente durante la ejecucién de un programa. Existen dos tipos de datos
en Python: mutables e inmutables.

Los datos mutables pueden ser actualizados libremente en cualquier momento, a esta operacion se le
denomina «in situ».

In situ es una expresién en Latin que se traduce literalmente como en posicién, en el lugar o momento. Por
ejemplo, la siguiente instruccién modifica los datos «in situ»:

list.append

Los datos inmutables no pueden ser modificados de esta manera.

Imagina que una lista solo puede ser asignada y leida. No podrias adjuntar ni remover un elemento de la lista. Si
se agrega un elemento al final de la lista provocaria que la lista se cree desde cero.

Se tendria que crear una lista completamente nueva, la cual contenga los elementos ya existentes mas el
nuevo elemento.

El tipo de datos que se desea tratar ahora se llama tupla. Una tupla es una secuencia inmutable. Se puede
comportar como una lista pero no puede ser modificada en el momento.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m4:funciones

Last
update:
21/06/2022
10:21

info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655832109

¢Qué es una tupla?

Lo primero que distingue una lista de una tupla es la sintaxis empleada para crearlas. Las tuplas utilizan
paréntesis, mientras que las listas usan corchetes, aunque también es posible crear una tupla tan solo
separando los valores por comas.

Observa el ejemplo:

tuple 1
tuple 2

Se definieron dos tuplas, ambas contienen cuatro elementos.
A continuacién se imprimen en consola:

tuple 1
tuple 2

tuple 1
tuple 2

Esto es lo que se muestra en consola:

(1, 2, 4, 8)
(1.0, 0.5, 0.25, 0.125)

Nota: cada elemento de una tupla puede ser de distinto tipo (punto flotante, entero, cadena, o cualquier
otro tipo de dato).

¢COmo crear una tupla?

(Es posible crear una tupla vacia? Si, solo se necesitan unos paréntesis:
empty tuple

Si se desea crear una tupla de un solo elemento, se debe de considerar el hecho de que, debido a la sintaxis
(una tupla debe de poder distinguirse de un valor entero ordinario), se debe de colocar una coma al final:

one element tuple 1
one element tuple 2

El quitar las comas no arruinara el programa en el sentido sintactico, pero serdn dos variables, no tuplas.

¢Como utilizar un tupla?

Si deseas leer los elementos de una tupla, lo puedes hacer de la misma manera que se hace con las listas.

my tuple

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 07:28

14/02/2026 07:28 3/18 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

my tuple

my tuplel-
my tuplel[1l:
my tuplel:-

elem my tuple:
elem

El programa debe de generar la siguiente salida, ejecltalo y comprueba:

1

1000

(10, 100, 1600)
(1, 10)

1

10

100

1000

Las similitudes pueden ser engafiosas - no intentes modificar el contenido de la tupla jNo es una lista!
Todas estas instrucciones (con excepcién de primera) causaran un error de ejecucion.

:Qué mas pueden hacer las tuplas?

La funcién len() acepta tuplas, y regresa el nimero de elementos contenidos dentro.
El operador + puede unir tuplas (ya se ha mostrado esto antes).

El operador * puede multiplicar las tuplas, asi como las listas.

Los operadores in y not in funcionan de la misma manera que en las listas.

my tuple

tl = my tuple +
t2 = my tuple *

len(t2
tl
t2
my tuple
- my tuple

La salida es la siguiente:

9

(1, 10, 100, 1000, 10000)

(1, 16, 100, 1, 10, 100, 1, 10, 100)
True

True

Una de las propiedades de las tuplas mas Utiles es que pueden aparecer en el lado izquierdo del operador
de asignacion. Este fendmeno ya se vio con anterioridad, cuando fue necesario encontrar una manera de
intercambiar los valores entre dos variables.

Observa el siguiente fragmento de cédigo:

var

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
21/06/2022
10:21

info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655832109

t1
t2
t3 var

tl, t2, t3 t2, t3, t1

tl, t2, t3

Muestra tres tuplas interactuando en efecto, los valores almacenados en ellas «circulan» entre ellas. t1 se
convierte en t2, t2 se convierte en t3, y t3 se convierte en t1.

Nota: el ejemplo presenta un importante hecho mas: los elementos de una tupla pueden ser variables, no
solo literales. Ademds, pueden ser expresiones si se encuentran en el lado derecho del operador de asignacién.

:Qué es un diccionario?

El diccionario es otro tipo de estructura de datos de Python. No es una secuencia (pero puede adaptarse
facilmente a un procesamiento secuencial) y ademds es mutable.

Para explicar lo que es un diccionario en Python, es importante comprender de manera literal lo que es un
diccionario.

Un diccionario en Python funciona de la misma manera que un diccionario bilingiie. Por ejemplo, se tiene la
palabra en espafiol «gato» y se necesita su equivalente en francés. Lo que se haria es buscar en el diccionario
para encontrar la palabra «gato». Eventualmente la encontrards, y sabrds que la palabra equivalente en francés
es «chat».

En el mundo de Python, la palabra que se esta buscando se denomina clave(key). La palabra que se obtiene
del diccionario es denominada valor.

Esto significa que un diccionario es un conjunto de pares de claves y valores. Nota:

¢ Cada clave debe de ser Unica. No es posible tener una clave duplicada.

¢ Una clave puede ser un tipo de dato de cualquier tipo: puede ser un nimero (entero o flotante), o incluso
una cadena.

¢ Un diccionario no es una lista. Una lista contiene un conjunto de valores numerados, mientras que un
diccionario almacena pares de valores.

e La funcién len() aplica también para los diccionarios, regresa la cantidad de pares (clave-valor) en el
diccionario.

¢ Un diccionario es una herramienta de un solo sentido. Si fuese un diccionario espafiol-francés, podriamos
buscar en espafiol para encontrar su contraparte en francés mas no viceversa.

¢Como crear un diccionario?

Si deseas asignar algunos pares iniciales a un diccionario, utiliza la siguiente sintaxis:

dictionary "gato" : "chat", "perro" : "chien", "caballo" : "cheval"
phone numbers 'jefe': 'Suzy':
empty dictionary

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 07:28

14/02/2026 07:28 5/18 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

dictionary
phone numbers
empty dictionary

En este primer ejemplo, el diccionario emplea claves y valores las cuales ambas son cadenas. En el segundo, las
claves con cadenas pero los valores son enteros. El orden inverso (claves » nimeros, valores - cadenas)
también es posible, asi como la combinacién niimero a nimero.

La lista de todos los pares es encerrada con llaves, mientras que los pares son separados por comas, y las
claves y valores por dos puntos.

El primer diccionario es muy simple, es un diccionario Espafiol-Francés. El segundo es un directorio telefénico
muy pequefio.

Los diccionarios vacios son construidos por un par vacio de llaves - nada inusual.

El diccionario entero se puede imprimir con una invocacién a la funcién print(). El fragmento de cédigo puede
producir la siguiente salida:

{'perro': 'chien', 'caballo': 'cheval', 'gato': 'chat'}
{'Suzy': 5557654321, 'jefe': 5551234567}
{}

¢Has notado que el orden de los pares impresos es diferente a la asignacién inicial?, ;Qué significa esto?

Primeramente, recordemos que los diccionarios no son listas - no guardan el orden de sus datos, el orden no
tiene significado (a diferencia de los diccionarios reales). El orden en que un diccionario almacena sus datos
esta fuera de nuestro control. Esto es normal. (*)

NOTA: En Python 3.6x los diccionarios se han convertido en colecciones ordenadas de manera predeterminada.
Tu resultado puede variar dependiendo en la versidn de Python que se este utilizando.

¢Como utilizar un diccionario?

Si deseas obtener cualquiera de los valores, debes de proporcionar una clave valida:

dictionary|'gato’
phone numbers|'Suzy'

El obtener el valor de un diccionario es semejante a la indexacién, gracias a los corchetes alrededor del valor de
la clave.

Nota:

¢ Si una clave es una cadena, se tiene que especificar como una cadena.
¢ Las claves son sensibles a las mayusculas y mindsculas: 'Suzy' seria diferente a 'suzy'.

El fragmento de cédigo da las siguientes salidas:

chat
5557654321

Ahora algo muy importante: No se puede utilizar una clave que no exista. Hacer algo como lo siguiente:

phone numbers| 'presidente’

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last

g??;é/ez:ozz info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655832109

10:21

Provocard un error de ejecucion. Inténtalo.

Afortunadamente, existe una manera simple de evitar dicha situacién. El operador in, junto con su
acompafante, not in, pueden salvarnos de esta situacion.

El siguiente cddigo busca de manera segura palabras en francés:

dictionary "gato" : "chat", "perro" : "chien", "caballo" : "cheval"
words 'gato', 'ledn', 'caballo'

word words:
word dictionary:
word, "->", dictionary|[word

word, "no estd en el diccionario"
La salida del cddigo es la siguiente:

gato -> chat
1ledn no estd en el diccionario
caballo -> cheval

Nota: Cuando escribes una expresion grande o larga, puede ser una buena idea mantenerla alineada
verticalmente. Asi es como puede hacer que el cddigo sea mas legible y mas amigable para el programador, por
ejemplo:

Ejemplo 1:
dictionary
“gato": "chat"
"perro": "chien"
"caballo": "cheval"
Ejemplo 2:
phone numbers 'jefe':
‘Suzy':

Este tipo de formato se llama sangria francesa.

¢Como utilizar un diccionario? El método keys()

(Pueden los diccionarios ser examinados utilizando el bucle for, como las listas o tuplas?
No y si.
No, porque un diccionario no es un tipo de dato secuencial - el bucle for no es (til aqui.

Si, porque hay herramientas simples y muy efectivas que pueden adaptar cualquier diccionario a los
requerimientos del bucle for (en otras palabras, se construye un enlace intermedio entre el diccionario y
una entidad secuencial temporal).

El primero de ellos es un método denominado keys(), el cual es parte de todo diccionario. El método retorna o

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 07:28

14/02/2026 07:28 7/18 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

regresa una lista de todas las claves dentro del diccionario. Al tener una lista de claves se puede acceder a todo
el diccionario de una manera facil y Gtil.

A continuacién se muestra un ejemplo:

dictionary "gato" : "chat", "perro" : "chien", "caballo" : "cheval"
key dictionary.keys
key, "->", dictionary|key

El c6digo produce la siguiente salida:
gato -> chat

perro -> chien
caballo -> cheval

La funcion sorted()

:Deseas que la salida este ordenada? Solo hay que agregar al bucle for lo siguiente:
key sorted(dictionary.keys

La funcién sorted() hara su mejor esfuerzo y la salida sera la siguiente:

caballo -> cheval

gato -> chat
perro -> chien

¢Como utilizar un diccionario? Los métodos item() y values()

Otra manera de hacerlo es utilizar el método items(). Este método regresa una lista de tuplas (este es el
primer ejemplo en el que las tuplas son mas que un ejemplo de si mismas) donde cada tupla es un par de
cada clave con su valor.

Asi es como funciona:

dictionary "gato" : "chat", "perro" : "chien", "caballo" : "cheval"
index, value dictionary.items
index, "->", value

Nota la manera en que la tupla ha sido utilizada como una variable del bucle for.
El ejemplo imprime lo siguiente
gato -> chat

perro -> chien
caballo -> cheval

También existe un método denominado values(), funciona de manera muy similar al de keys(), pero regresa
una lista de valores.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
21/06/2022
10:21

info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655832109

Este es un ejemplo sencillo:
dictionary "gato" : "chat", "perro" : "chien", "caballo" : "cheval"

value dictionary.values
value

Como el diccionario no es capaz de automaticamente encontrar la clave de un valor dado, el rol de este método
es algo limitado.

Esta es la salida esperada:

chat
chien
cheval

¢Como utilizar un diccionario? Modificar, agregar y eliminar
valores

El asignar un nuevo valor a una clave existente es sencillo, debido a que los diccionarios son completamente
mutables, no existen obstaculos para modificarlos.

Se va a reemplazar el valor «chat» por «minou», lo cual no es muy adecuado, pero funcionara con nuestro
ejemplo.

dictionary ‘gato': 'minou', 'perro': 'chien', 'caballo': 'cheval'
dictionary| 'gato’ 'minou’
dictionary
La salida es:
{'gato': 'minou', 'dog': 'chien', ‘'caballo': 'cheval'}

Agregando nuevas claves

El agregar una nueva clave con su valor a un diccionario es tan simple como cambiar un valor. Solo se tiene que
asignar un valor a una nueva clave que no haya existido antes.

Nota: este es un comportamiento muy diferente comparado a las listas, las cuales no permiten asignar valores a
indices no existentes.

A continuacién se agrega un par nuevo al diccionario, un poco extrafio pero valido:

dictionary "gato" : "chat", "perro" : "chien", "caballo" : "cheval"
dictionary/['cisne'’ 'cygne’
dictionary

El ejemplo muestra como salida:

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 07:28

14/02/2026 07:28 9/18 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

{'gato': 'chat', 'perro': 'chien', ‘'caballo': 'cheval', 'cisne': 'cygne'}

Note: También es posible insertar un elemento al diccionario utilizando el método update(), por ejemplo:

dictionary "gato" : "chat", "perro" : "chien", "caballo" : "cheval"
dictionary.update({"pato": "canard"
dictionary

Eliminado una clave

iPuedes deducir como eliminar una clave de un diccionario?

Nota: al eliminar la clave también se removera el valor asociado. Los valores no pueden existir sin sus
claves.

Esto se logra con la instruccién del.

A continuacién un ejemplo:
dictionary "gato" : "chat", "perro" : "chien", "caballo" : "cheval"

dictionary| 'perro’
dictionary

Nota: el eliminar una clave no existente, provocara un error.

El ejemplo da como salida:

{'gato': 'chat', 'caballo': 'cheval'}
EXTRA

Para eliminar el ultimo elemento de la lista, se puede emplear el método popitem():
dictionary "gato" : "chat", "perro" : "chien", "caballo" : "cheval"

dictionary.popitem
dictionary # salida: {'gato': 'chat', 'perro': 'chien'}

En versiones anteriores de Python, por ejemplo, antes de la 3.6.7, el método popitem() elimina un elemento al
azar del diccionario.

Las tuplas y los diccionarios pueden trabajar juntos

Se ha preparado un ejemplo sencillo, mostrando como las tuplas y los diccionarios pueden trabajar juntos.
Imaginemos el siguiente problema:

Necesitas un programa para calcular los promedios de tus alumnos. El programa pide el nombre del alumno
seguido de su calificacién. Los nombres son ingresados en cualquier orden. El ingresar un nombre vacio finaliza

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:

21/06/2022

10:21

info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655832109

el ingreso de los datos (nota 1: ingresar una puntuacion vacia generara la excepcién ValueError, pero no te
preocupes por eso ahora, veras como manejar tales casos cuando hablemos de excepciones en el segundo
parte de la serie del curso). Una lista con todos los nombre y el promedio de cada alumno debe ser mostrada al

final.

school class = {}

while True:
name = input("Ingresa el nombre del estudiante: ")
if name == '':

break

score = int(input("Ingresa la calificacién del estudiante (0-10): "))
if score not in range(0, 11):

break

if name in school class:

school class[name] += (score,)

else:

school class[name] = (score,)

for name in sorted(school class.keys()):
adding = 0
counter = 0
for score in school class[name]:

adding += score
counter +=1

print(name, ":", adding / counter)

Ahora se analizard linea por linea:

Linea 1: crea un diccionario vacio para ingresar los datos: el nombre del alumno es empleado como
clave, mientras que todas las calificaciones asociadas son almacenadas en una tupla (la tupla puede ser
el valor de un diccionario, esto no es un problema).

Linea 3: se ingresa a un bucle «infinito» (no te preocupes, saldrémos de el en el momento indicado).
Linea 4: se lee el nombre del alumno aqui.

Linea 5-6: si el nombre es una cadena vacia (), salimos del bucle.

Linea 8: se pide la calificacion del estudiante (un valor entero en el rango del 1-10).

Linea 9-10: si la puntuacién ingresada no estd dentro del rango de 0 a 10, se abandona el bucle.

Linea 12-13: si el nombre del estudiante ya se encuentra en el diccionario, se alarga la tupla asociada

con la nueva calificacién (observa el operador + 'El .

Linea 14-15: si el estudiante es nuevo (desconocido para el diccionario), se crea una entrada nueva, su
valor es una tupla de un solo elemento la cual contiene la calificacién ingresada.

Linea 17: se itera a través de los nombres ordenados de los estudiantes.

Linea 18-19: inicializa los datos necesarios para calcular el promedio (sum y counter).

Linea 20-22: se itera a través de la tupla, tomado todas las calificaciones subsecuentes y actualizando la
suma junto con el contador

Linea 23: se calcula e imprime el promedio del alumno junto con su nombre.

Este es un ejemplo del programa:

Ingresa el nombre del estudiante: Bob

Ingresa la calificacién del estudiante (0-10): 7
Ingresa el nombre del estudiante: Andy

Ingresa la calificacién del estudiante (0-10): 3

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 07:28

14/02/2026 07:28 11/18 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

Ingresa el nombre del estudiante: Bob

Ingresa la calificacién del estudiante (0-10): 2
Ingresa el nombre del estudiante: Andy

Ingresa la calificacién del estudiante (0-10): 10
Ingresa el nombre del estudiante: Andy

Ingresa la calificacién del estudiante (0-10): 3
Ingresa el nombre del estudiante: Bob

Ingresa la calificacién del estudiante (0-10): 9
Ingresa el nombre del estudiante:

Andy : 5.333333333333333

Bob : 6.0

Puntos Clave: Tuplas

1. Las Tuplas son colecciones de datos ordenadas e inmutables. Se puede pensar en ellas como listas
inmutables. Se definen con paréntesis:

my tuple True, "una cadena" None
my tuple

my list True, "una cadena" None
my list

Cada elemento de la tupla puede ser de un tipo de dato diferente (por ejemplo, enteros, cadenas, boleanos,
etc.). Las tuplas pueden contener otras tuplas o listas (y viceversa).

2. Se puede crear una tupla vacia de la siguiente manera:

empty tuple
type(empty tuple # salida: <class 'tuple'>

3. La tupla de un solo elemento se define de la siguiente manera:

one elem tuple 1 "uno" # Paréntesis y una coma.
one elem tuple 2 "uno" # Sin paréntesis, solo la coma.

Si se elimina la coma, Python creard una variable no una tupla:

my tuple 1
type(my tuple 1 # salida: <class 'tuple'>
my tuple 2 # Esto no es una tupla.
type(my tuple 2 # salida: <class 'int'>

4. Se pueden acceder los elementos de la tupla al indexarlos:

my tuple "cadena" True
my tuple # salida: [3, 4]

5. Las tuplas son immutable, lo que significa que no se puede agregar, modificar, cambiar o quitar elementos. El
siguiente fragmento de cédigo provocara una excepcién:

my tuple "cadena" True

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last

g??;é/ez:ozz info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655832109
10:21
my tuple "guitarra" # La excepcidn TypeError sera lanzada.

Sin embargo, se puede eliminar la tupla completa:

my tuple
my tuple
my tuple # NameError: name 'my tuple' is not defined

6. Puedes iterar a través de los elementos de una tupla con un bucle (Ejemplo 1), verificar si un elemento o no
esta presente en la tupla (Ejemplo 2), emplear la funcién len() para verificar cuantos elementos existen en la
tupla (Ejemplo 3), o incluso unir o multiplicar tuplas (Ejemplo 4):

Ejemplo 1
tuple 1
elem tuple 1:
elem

Ejemplo 2
tuple 2
tuple 2
tuple 2

Ejemplo 3
tuple 3
len(tuple 3

Ejemplo 4
tuple 4 = tuple 1 + tuple 2
tuple 5 = tuple 3 *

tuple 4
tuple 5

EXTRA

También se puede crear una tupla utilizando la funcién integrada de Python tuple(). Esto es particularmente
Gtil cuando se desea convertir un iterable (por ejemplo, una lista, rango, cadena, etcétera) en una tupla:

my tuple = tuple "cadena"

my tuple
my list

my list # salida: [2, 4, 6]

type(my list # salida: <class 'list'>
tup = tuple(my list

tup # salida: (2, 4, 6)

type(tup # salida: <class 'tuple'>

De la misma manera, cuando se desea convertir un iterable en una lista, se puede emplear la funcién integrada
de Python denominada list():

tup

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 07:28

14/02/2026 07:28 13/18 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

my list = list(tup
type(my list # salida: <class 'list'>

Puntos Clave: Diccionarios

1. Los diccionarios son *colecciones indexadas de datos, mutables y desordenadas. (*En Python 3.6x los
diccionarios estan ordenados de manera predeterminada.

Cada diccionario es un par de clave : valor. Se puede crear empleado la siguiente sintaxis:

my dictionary
keyl: valuel
key2: value2
key3: value3

2. Si se desea acceder a un elemento del diccionario, se puede hacer haciendo referencia a su clave
colocéndola dentro de corchetes (Ejemplo 1) o utilizando el método get () (Ejemplo 2):

pol esp dictionary

"kwiat": "flor"
"woda": "agua"
"gleba": "tierra"
item 1 = pol esp dictionary|"gleba" # Ejemplo 1.
item 1 # salida: tierra
item 2 = pol esp dictionary.get("woda" # Ejemplo 2.
item 2 # salida: agua

3. Si se desea cambiar el valor asociado a una clave especifica, se puede hacer haciendo referencia a la clave
del elemento, a continuacién se muestra un ejemplo:

pol esp dictionary

"zamek" : "castillo"
"woda" : "agua"
"gleba" : "tierra"
pol esp dictionary|"zamek" "cerradura"

item = pol esp dictionary|"zamek"
item) # salida: cerradura

4, Para agregar o eliminar una clave (junto con su valor asociado), emplea la siguiente sintaxis:

phonebook # un diccionario vacio
phonebook| "Adan" # crear/agregar un par clave-valor
phonebook # salida: {'Adan': 3456783958}

phonebook| "Adan"
phonebook # salida: {}

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
21/06/2022
10:21

info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655832109

Ademas, se puede insertar un elemento a un diccionario utilizando el método update(), y eliminar el ultimo
elemento con el método popitem(), por ejemplo:

pol esp dictionary "kwiat": "flor"
pol esp dictionary.update({"gleba": "tierra"
pol esp dictionary # salida: {'kwiat': 'flor', 'gleba': 'tierra'}

pol esp dictionary.popitem
pol esp dictionary # salida: {'kwiat': 'flor'}

5. Se puede emplear el bucle for para iterar a través del diccionario, por ejemplo:

pol esp dictionary

"zamek": "castillo"

"woda": "agua"

"gleba": "tierra"

item pol esp dictionary:
item

salida: zamek
woda
gleba

6. Si deseas examinar los elementos (claves y valores) del diccionario, puedes emplear el método items (), por
ejemplo:

pol esp dictionary

"zamek" : "castillo"

"woda" : "agua"

"gleba" : "tierra"

key, value pol esp dictionary.items
"Pol/Esp ->", key, ":", value

7. Para comprobar si una clave existe en un diccionario, se puede emplear la palabra clave reservada in:

pol esp dictionary

"zamek" : "castillo"

"woda" : "agua"

"gleba" : "tierra"

"zamek" pol esp dictionary:
IISiII
IINOII

8. Se puede emplear la palabra reservada del para eliminar un elemento, o un diccionario entero. Para eliminar
todos los elementos de un diccionario se debe emplear el método clear():

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 07:28

14/02/2026 07:28 15/18 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

pol esp dictionary

"zamek" : "castillo"

"woda" : "agua"

"gleba" : "tierra"
len(pol esp dictionary # salida: 3

pol esp dictionary|"zamek" # eliminar un elemento
len(pol esp dictionary # salida: 2

pol esp dictionary.clear # eliminar todos los elementos

len(pol esp dictionary # salida: 0

pol esp dictionary # elimina el diccionario

9. Para copiar un diccionario, emplea el método copy():

pol esp dictionary

"zamek" : "castillo"
"woda" : "agua"
"gleba" : "tierra"

copy dictionary = pol esp dictionary.copy

Excepciones

El lidiar con errores de programacién tiene (al menos) dos partes. La primera es cuando te metes en problemas
porque tu cédigo, aparentemente correcto, se alimenta con datos incorrectos. Por ejemplo, esperas que se
ingrese al cédigo un valor entero, pero tu usuario descuidado ingresa algunas letras al azar.

Puede suceder que tu cddigo termine en ese momento y el usuario se quede solo con un mensaje de error
conciso y a la vez ambiguo en la pantalla. El usuario estard insatisfecho y tu también deberias estarlo. Te
mostraremos cémo proteger tu cédigo de este tipo de fallas y cdmo no provocar la ira del usuario.

La segunda parte de lidiar con errores de programacion se revela cuando ocurre un comportamiento no
deseado del programa debido a errores que se cometieron cuando se estaba escribiendo el cddigo. Este tipo de
error se denomina cominmente «bug» (bicho en inglés), que es una manifestacién de una creencia bien
establecida de que, si un programa funciona mal, esto debe ser causado por bichos maliciosos que viven dentro
del hardware de la computadora y causan cortocircuitos u otras interferencias.

Esta idea no es tan descabellada como puede parecer: incidentes de este tipo eran comunes en tiempos en que
las computadoras ocupaban grandes pasillos, consumian kilovatios de electricidad y producian enormes
cantidades de calor. Afortunadamente, o no, estos tiempos se han ido para siempre y los (nicos errores que
pueden estropear tu cédigo son los que ti mismo sembraste en el cédigo. Por lo tanto, intentaremos mostrarte
cémo encontrar y eliminar tus errores, en otras palabras, cdmo depurar tu cédigo.

Cuando los datos no son lo que deberian ser

Escribamos un fragmento de cddigo extremadamente trivial: leerd un nimero natural (un entero no negativo) e
imprimira su reciproco. De esta forma, 2 se convertird en 0.5 (1/2) y 4 en 0.25 (1/4).

value int(input('Ingresa un ndmero natural: '

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
21/06/2022
10:21

info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655832109

'ELl reciproco de', value, 'es' /value

¢Hay algo que pueda salir mal? El c4digo es tan breve y compacto que no parece que vayamos a encontrar
ningln problema alli.

Parece que ya sabes hacia dénde vamos. Si, tienes razén: ingresar datos que no sean un nimero entero (que
también incluye ingresar nada) arruinarad completamente la ejecucién del programa. Esto es lo que vera el
usuario del cédigo:

Traceback (most recent call last
File "code.py", line
value = int(input('Ingresa un nldmero natural: '
ValueError: invalid literal int base g ¢

Todas las lineas que muestra Python son significativas e importantes, pero la dltima linea parece ser la mas
valiosa. La primera palabra de la linea es el nombre de la excepcidn la cual provoca que tu cddigo se detenga.
Su nombre aqui es ValueError. El resto de la linea es solo una breve explicaciéon que especifica con mayor
precision la causa de la excepcién ocurrida.

:Cémo lo afrontas? ;Como proteges tu cddigo de la terminacién abrupta, al usuario de la decepcién y a ti mismo
de la insatisfaccion del usuario?

La primera idea que se te puede ocurrir es verificar si los datos proporcionados por el usuario son validos y
negarte a cooperar si los datos son incorrectos. En este caso, la verificacién puede basarse en el hecho de que
esperamos que la cadena de entrada contenga solo digitos.

Ya deberias poder implementar esta verificacidn y escribirla tu mismo, ;no es asi? También es posible
comprobar si la variable value es de tipo int (Python tiene un medio especial para este tipo de comprobaciones:
es un operador llamado is. La revisién en si puede verse de la siguiente manera:

type(value int

Su resultado es verdadero si el valor actual de la variable value es del tipo int.

Perdénanos si no dedicamos mas tiempo a esto ahora; encontraras explicaciones mas detalladas sobre el
operador is en un médulo del curso dedicado a la programacién orientada a objetos.

Es posible que te sorprendas al saber que no queremos que realices ninguna validacién preliminar de datos.
¢Por qué? Porque esta no es la forma que Python recomienda.

El Cadigo Python

En el mundo de Python, hay una regla que dice: «Es mejor pedir perddn que pedir permiso».

Detengdmonos aqui por un momento. No nos malinterpretes, no queremos que apliques la regla en tu vida
diaria. No tomes el automovil de nadie sin permiso, con la esperanza de que puedas ser tan convincente que
evites la condena por lo ocurrido. La regla se trata de otra cosa.

En realidad, la regla dice: «es mejor manejar un error cuando ocurre que tratar de evitarlo».

«De acuerdo», puedes decir, «pero ;cémo debo pedir perdédn cuando el programa finaliza y no queda nada que
mas por hacer?». Aqui es donde algo llamado excepcidn entra en escena.

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 07:28

14/02/2026 07:28 17/18 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

Es un lugar donde
tu puedes hacer algo
sin pedir permiso.

Es un espacio dedicado
exclusivamente para pedir perdon.

Puedes ver dos blogues aqui:

¢ El primero, comienza con la palabra clave reservada try: este es el lugar donde se coloca el cédigo que
se sospecha que es riesgoso y puede terminar en caso de un error; nota: este tipo de error lleva por
nombre excepcidn, mientras que la ocurrencia de la excepcién se le denomina generar; podemos decir
que se genera (o se generd) una excepcion.

¢ El seqgundo, la parte del cédigo que comienza con la palabra clave reservada except: esta parte fue
disefiada para manejar la excepcién; depende de ti lo que quieras hacer aqui: puedes limpiar el desorden
o simplemente puede barrer el problema debajo de la alfombra (aunque se prefiere la primera solucién).

Entonces, podriamos decir que estos dos bloques funcionan asi:

¢ La palabra clave reservada try marca el lugar donde intentas hacer algo sin permiso.
¢ La palabra clave reservada except comienza un lugar donde puedes mostrar tu talento para disculparte
0 pedir perdon.

Como puedes ver, este enfoque acepta errores (los trata como una parte normal de la vida del programa) en
lugar de intensificar los esfuerzos para evitarlos por completo.

La excepcion confirma la regla

Reescribamos el cédigo para adoptar el enfoque de Python para la vida.

value input('Ingresa un nimero natural: '
'El reciproco de', value, 'es' /int(value

'No se que hacer con', value

Resumamos lo que hemos hablado:

¢ Cualquier fragmento de cédigo colocado entre try y except se ejecuta de una manera muy especial:
cualquier error que ocurra aqui dentro no terminara la ejecucion del programa. En cambio, el control
saltard inmediatamente a la primera linea situada después de la palabra clave reservada except, y no
se ejecutard ninguna otra linea del bloque try.

e El codigo en el blogque except se activa solo cuando se ha encontrado una excepcién dentro del bloque
try. No hay forma de llegar por ningin otro medio.

e Cuando el bloque try o except se ejecutan con éxito, el control vuelve al proceso normal de ejecucién y
cualquier cédigo ubicado mas alla en el archivo fuente se ejecuta como si no hubiera pasado nada.

Ahora queremos hacerte una pregunta: ;Es ValueError la Gnica forma en que el control podria caer dentro del
blogque except?

Como lidiar con mas de una excepcion

La respuesta obvia es «no»: hay mas de una forma posible de plantear una excepcién. Por ejemplo, un usuario
puede ingresar cero como entrada, ;puedes predecir lo que sucederd a continuaciéon?

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
21/06/2022
10:21

info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655832109

Si, tienes razén: la divisién colocada dentro de la invocacién de la funcién print() generard la excepcién
ZeroDivisionError. Como es de esperarse, el comportamiento del cddigo sera el mismo que en el caso
anterior: el usuario verd el mensaje «No se que hacer con...», o que parece bastante razonable en este
contexto, pero también es posible que desees manejar este tipo de problema de una manera un poco diferente.

(Es posible? Por supuesto que lo es. Hay al menos dos enfoques que puedes implementar aqui.

El primero de ellos es simple y complicado al mismo tiempo: puedes agregar dos bloques try por separado,
uno que incluya la invocacién de la funcién input() donde se puede generar la excepcién ValueError, y el
segundo dedicado a manejar posibles problemas inducidos por la divisién. Ambos bloques try tendrian su
propio except, y de esa manera, tendrias un control total sobre dos errores diferentes.

Esta solucién es buena, pero es un poco larga: el céddigo se hincha innecesariamente. Ademas, no es el Unico
peligro que te espera. Toma en cuenta que dejar el primer bloque try-except deja mucha incertidumbre;
tendras que agregar cddigo adicional para asegurarte de que el valor que ingresé el usuario sea seguro para
usar en la divisién. Asi es como una solucién aparentemente simple se vuelve demasiado complicada.

Dos excepciones después de un try.

value input('Ingresa un numero natural:

'El reciproco de', value, 'es' /int(value
ValueError:

'No se que hacer con', value
ZeroDivisionError:

'La divisidén entre cero no estd permitida en nuestro Universo.'

Como puedes ver, acabamos de agregar un segundo except. Esta no es la Unica diferencia; toma en cuenta
gue ambos except tienen nombres de excepcidn especificos. En esta variante, cada una de las excepciones
esperadas tiene su propia forma de manejar el error, pero se debe enfatizarse en que solo una de todas puede
interceptar el control; si se ejecuta una, todas las demas permanecen inactivas. Ademas, la cantidad de
excepciones no estd limitado: puedes especificar tantas o tan pocas como necesites, pero no se te olvide que
ninguna de las excepciones se puede especificar mas de una vez.

Pero esta todavia no es la Gltima palabra de Python sobre excepciones.

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655832109

Last update: 21/06/2022 10:21

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 07:28

https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m4?rev=1655832109

	Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos
	Tipos de secuencias y mutabilidad
	¿Qué es una tupla?
	¿Cómo crear una tupla?
	¿Cómo utilizar un tupla?
	¿Qué es un diccionario?
	¿Cómo crear un diccionario?
	¿Cómo utilizar un diccionario?
	¿Cómo utilizar un diccionario? El método keys()
	La función sorted()
	¿Cómo utilizar un diccionario? Los métodos item() y values()
	¿Cómo utilizar un diccionario? Modificar, agregar y eliminar valores
	Agregando nuevas claves
	Eliminado una clave
	EXTRA

	Las tuplas y los diccionarios pueden trabajar juntos
	Puntos Clave: Tuplas
	EXTRA
	Puntos Clave: Diccionarios

	Excepciones
	Cuando los datos no son lo que deberían ser
	El Código Python
	La excepción confirma la regla
	Cómo lidiar con más de una excepción
	Dos excepciones después de un try.

