14/02/2026 07:28 1/8 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

Modulo 4 - Funciones, Tuplas, Diccionarios,
Exceptiones y Procesamiento de Datos

Modulo 4: Funciones
o Estructuracién de cédigo y el concepto de funcion.
o Invocacién de funciones y devolucién de resultados de una funcion.
o Alcance de nombres y sombreado de variables.
Modulo 4: Tuplas
o Tuplas y su propésito: construccién y uso de tuplas.
Modulo 4: Diccionarios
o Diccionarios y su propdsito: construccién y uso de diccionarios.
Modulo 4: Excepciones
o Introduccién a las excepciones en Python.

Puntos Clave: Tuplas

1. Las Tuplas son colecciones de datos ordenadas e inmutables. Se puede pensar en ellas como listas
inmutables. Se definen con paréntesis:

my tuple True, "una cadena" None
my tuple

my list True, "una cadena" None
my list

Cada elemento de la tupla puede ser de un tipo de dato diferente (por ejemplo, enteros, cadenas, boleanos,
etc.). Las tuplas pueden contener otras tuplas o listas (y viceversa).

2. Se puede crear una tupla vacia de la siguiente manera:

empty tuple
type(empty tuple # salida: <class 'tuple'>

3. La tupla de un solo elemento se define de la siguiente manera:

one elem tuple 1 "uno" # Paréntesis y una coma.
one elem tuple 2 "uno" # Sin paréntesis, solo la coma.

Si se elimina la coma, Python creard una variable no una tupla:

my tuple 1
type(my tuple 1 # salida: <class 'tuple'>
my tuple 2 # Esto no es una tupla.
type(my tuple 2 # salida: <class 'int'>

4. Se pueden acceder los elementos de la tupla al indexarlos:

my tuple "cadena" True
my tuple # salida: [3, 4]

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m4:funciones
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m4:tuplas
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m4:diccionarios
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m4:excepciones

Last
update:
21/06/2022
10:25

info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655832316

5. Las tuplas son immutable, lo que significa que no se puede agregar, modificar, cambiar o quitar elementos. El
siguiente fragmento de cédigo provocara una excepcién:

my tuple "cadena" True
my tuple "guitarra" # La excepcidn TypeError sera lanzada.

Sin embargo, se puede eliminar la tupla completa:

my tuple
my tuple
my tuple # NameError: name 'my tuple' is not defined

6. Puedes iterar a través de los elementos de una tupla con un bucle (Ejemplo 1), verificar si un elemento o no
esta presente en la tupla (Ejemplo 2), emplear la funcién len() para verificar cuantos elementos existen en la
tupla (Ejemplo 3), o incluso unir o multiplicar tuplas (Ejemplo 4):

Ejemplo 1
tuple 1
elem tuple 1:
elem

Ejemplo 2
tuple 2
tuple 2
tuple 2

Ejemplo 3
tuple 3
len(tuple 3

Ejemplo 4
tuple 4 = tuple 1 + tuple 2
tuple 5 = tuple 3 *

tuple 4
tuple 5

EXTRA

También se puede crear una tupla utilizando la funcién integrada de Python tuple(). Esto es particularmente
Gtil cuando se desea convertir un iterable (por ejemplo, una lista, rango, cadena, etcétera) en una tupla:

my tuple = tuple "cadena"

my tuple
my list

my list # salida: [2, 4, 6]

type(my list # salida: <class 'list'>
tup = tuple(my list

tup # salida: (2, 4, 6)

type(tup # salida: <class 'tuple'>

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 07:28

14/02/2026 07:28 3/8 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

De la misma manera, cuando se desea convertir un iterable en una lista, se puede emplear la funcién integrada
de Python denominada list():

tup
my list = list(tup
type(my list # salida: <class 'list'>

Puntos Clave: Diccionarios

1. Los diccionarios son *colecciones indexadas de datos, mutables y desordenadas. (*En Python 3.6x los
diccionarios estan ordenados de manera predeterminada.

Cada diccionario es un par de clave : valor. Se puede crear empleado la siguiente sintaxis:

my dictionary
keyl: valuel
key2: value2
key3: value3

2. Si se desea acceder a un elemento del diccionario, se puede hacer haciendo referencia a su clave
colocéndola dentro de corchetes (Ejemplo 1) o utilizando el método get () (Ejemplo 2):

pol esp dictionary

"kwiat": "flor"
"woda": "agua"
"gleba": "tierra"
item 1 = pol esp dictionary|"gleba" # Ejemplo 1.
item 1 # salida: tierra
item 2 = pol esp dictionary.get("woda" # Ejemplo 2.
item 2 # salida: agua

3. Si se desea cambiar el valor asociado a una clave especifica, se puede hacer haciendo referencia a la clave
del elemento, a continuacién se muestra un ejemplo:

pol esp dictionary

"zamek" : "castillo"
“WOda" : Ilaguall
"gleba" : "tierra"
pol esp dictionary|"zamek" "cerradura"

item pol esp dictionary|"zamek"
item) # salida: cerradura

4, Para agregar o eliminar una clave (junto con su valor asociado), emplea la siguiente sintaxis:

phonebook # un diccionario vacio
phonebook| "Adan" # crear/agregar un par clave-valor
phonebook # salida: {'Adan': 3456783958}

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last

g??;é/ez:ozz info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655832316

10:25

phonebook| "Adan"
phonebook # salida: {}

Ademas, se puede insertar un elemento a un diccionario utilizando el método update(), y eliminar el ultimo
elemento con el método popitem(), por ejemplo:

pol esp dictionary "kwiat": "flor"
pol esp dictionary.update({"gleba": "tierra"
pol esp dictionary # salida: {'kwiat': 'flor', 'gleba': 'tierra'}

pol esp dictionary.popitem
pol esp dictionary # salida: {'kwiat': 'flor'}

5. Se puede emplear el bucle for para iterar a través del diccionario, por ejemplo:

pol esp dictionary

"zamek": "castillo"

"woda": "agua"

"gleba": "tierra"

item pol esp dictionary:
item

salida: zamek
woda
gleba

6. Si deseas examinar los elementos (claves y valores) del diccionario, puedes emplear el método items (), por
ejemplo:

pol esp dictionary

"zamek" : "castillo"

"woda" : "agua"

"gleba" : "tierra"

key, value pol esp dictionary.items
"Pol/Esp ->", key, ":", value

7. Para comprobar si una clave existe en un diccionario, se puede emplear la palabra clave reservada in:

pol esp dictionary

"zamek" : "castillo"
"woda" : "agua"
"gleba" : "tierra"
"zamek" pol esp dictionary:
IISiII

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 07:28

14/02/2026 07:28 5/8 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

IINOII

8. Se puede emplear la palabra reservada del para eliminar un elemento, o un diccionario entero. Para eliminar
todos los elementos de un diccionario se debe emplear el método clear():

pol esp dictionary

"zamek" : "castillo"

“WOda" : Ilaguall

"gleba" : "tierra"
len(pol esp dictionary # salida: 3

pol esp dictionary|"zamek" # eliminar un elemento
len(pol esp dictionary # salida: 2

pol esp dictionary.clear # eliminar todos los elementos

len(pol esp dictionary # salida: 0

pol esp dictionary # elimina el diccionario

9. Para copiar un diccionario, emplea el método copy():

pol esp dictionary

"zamek" : "castillo"
IIWOdaII : Ilaguall
"gleba" : "tierra"

copy_dictionary pol esp dictionary.copy

Excepciones

El lidiar con errores de programacién tiene (al menos) dos partes. La primera es cuando te metes en problemas
porque tu cédigo, aparentemente correcto, se alimenta con datos incorrectos. Por ejemplo, esperas que se
ingrese al cédigo un valor entero, pero tu usuario descuidado ingresa algunas letras al azar.

Puede suceder que tu cddigo termine en ese momento y el usuario se quede solo con un mensaje de error
conciso y a la vez ambiguo en la pantalla. El usuario estara insatisfecho y tu también deberias estarlo. Te
mostraremos cdmo proteger tu cédigo de este tipo de fallas y cémo no provocar la ira del usuario.

La segunda parte de lidiar con errores de programacién se revela cuando ocurre un comportamiento no
deseado del programa debido a errores que se cometieron cuando se estaba escribiendo el cédigo. Este tipo de
error se denomina cominmente «bug» (bicho en inglés), que es una manifestacién de una creencia bien
establecida de que, si un programa funciona mal, esto debe ser causado por bichos maliciosos que viven dentro
del hardware de la computadora y causan cortocircuitos u otras interferencias.

Esta idea no es tan descabellada como puede parecer: incidentes de este tipo eran comunes en tiempos en que
las computadoras ocupaban grandes pasillos, consumian kilovatios de electricidad y producian enormes
cantidades de calor. Afortunadamente, o no, estos tiempos se han ido para siempre y los Unicos errores que
pueden estropear tu cédigo son los que tl mismo sembraste en el cédigo. Por lo tanto, intentaremos mostrarte
cémo encontrar y eliminar tus errores, en otras palabras, cdmo depurar tu cédigo.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
21/06/2022
10:25

info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655832316

Cuando los datos no son lo que deberian ser

Escribamos un fragmento de cddigo extremadamente trivial: leerd un nimero natural (un entero no negativo) e
imprimira su reciproco. De esta forma, 2 se convertird en 0.5 (1/2) y 4 en 0.25 (1/4).

value = int(input('Ingresa un numero natural: '
'El reciproco de', value, 'es' /value

(Hay algo que pueda salir mal? El cddigo es tan breve y compacto que no parece que vayamos a encontrar
ningln problema alli.

Parece que ya sabes hacia dénde vamos. Si, tienes razén: ingresar datos que no sean un nimero entero (que
también incluye ingresar nada) arruinard completamente la ejecucién del programa. Esto es lo que vera el
usuario del cédigo:

Traceback (most recent call last
File "code.py", line
value int (input('Ingresa un nimero natural: '
ValueError: invalid literal int base D

Todas las lineas que muestra Python son significativas e importantes, pero la Ultima linea parece ser la mas
valiosa. La primera palabra de la linea es el nombre de la excepcidn la cual provoca que tu cddigo se detenga.
Su nombre aqui es ValueError. El resto de la linea es solo una breve explicaciéon que especifica con mayor
precision la causa de la excepcién ocurrida.

¢Cémo lo afrontas? ;Como proteges tu cddigo de la terminacién abrupta, al usuario de la decepcién y a ti mismo
de la insatisfaccién del usuario?

La primera idea que se te puede ocurrir es verificar si los datos proporcionados por el usuario son validos y
negarte a cooperar si los datos son incorrectos. En este caso, la verificacion puede basarse en el hecho de que
esperamos que la cadena de entrada contenga solo digitos.

Ya deberias poder implementar esta verificacidn y escribirla tu mismo, ;no es asi? También es posible
comprobar si la variable value es de tipo int (Python tiene un medio especial para este tipo de comprobaciones:
es un operador llamado is. La revisién en si puede verse de la siguiente manera:

type(value int

Su resultado es verdadero si el valor actual de la variable value es del tipo int.

Perddnanos si no dedicamos mas tiempo a esto ahora; encontraras explicaciones mas detalladas sobre el
operador is en un médulo del curso dedicado a la programacidn orientada a objetos.

Es posible que te sorprendas al saber que no queremos que realices ninguna validacién preliminar de datos.
¢Por qué? Porque esta no es la forma que Python recomienda.

El Codigo Python

En el mundo de Python, hay una regla que dice: «Es mejor pedir perddn que pedir permisos.

Detengdmonos aqui por un momento. No nos malinterpretes, no queremos que apliques la regla en tu vida
diaria. No tomes el automévil de nadie sin permiso, con la esperanza de que puedas ser tan convincente que
evites la condena por lo ocurrido. La regla se trata de otra cosa.

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 07:28

14/02/2026 07:28 7/8 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

En realidad, la regla dice: «es mejor manejar un error cuando ocurre que tratar de evitarlo».

«De acuerdo», puedes decir, «pero ;cémo debo pedir perdédn cuando el programa finaliza y no queda nada que
mas por hacer?». Aqui es donde algo llamado excepcién entra en escena.

Es un lugar donde
tu puedes hacer algo
sin pedir permiso.

Es un espacio dedicado
exclusivamente para pedir perdon.

Puedes ver dos blogues aqui:

¢ El primero, comienza con la palabra clave reservada try: este es el lugar donde se coloca el cédigo que
se sospecha que es riesgoso y puede terminar en caso de un error; nota: este tipo de error lleva por
nombre excepcidn, mientras que la ocurrencia de la excepcién se le denomina generar; podemos decir
gue se genera (0 se generd) una excepcion.

» El seqgundo, la parte del cédigo que comienza con la palabra clave reservada except: esta parte fue
disefiada para manejar la excepcién; depende de ti lo que quieras hacer aqui: puedes limpiar el desorden
o simplemente puede barrer el problema debajo de la alfombra (aunque se prefiere la primera solucién).

Entonces, podriamos decir que estos dos bloques funcionan asi:

¢ La palabra clave reservada try marca el lugar donde intentas hacer algo sin permiso.
¢ La palabra clave reservada except comienza un lugar donde puedes mostrar tu talento para disculparte
0 pedir perdon.

Como puedes ver, este enfoque acepta errores (los trata como una parte normal de la vida del programa) en
lugar de intensificar los esfuerzos para evitarlos por completo.

La excepcion confirma la regla

Reescribamos el cédigo para adoptar el enfoque de Python para la vida.

value input('Ingresa un nuimero natural:
'El reciproco de', value, 'es' /int(value

'No se que hacer con', value

Resumamos lo que hemos hablado:

¢ Cualquier fragmento de cédigo colocado entre try y except se ejecuta de una manera muy especial:
cualquier error que ocurra aqui dentro no terminara la ejecucion del programa. En cambio, el control
saltard inmediatamente a la primera linea situada después de la palabra clave reservada except, y no
se ejecutard ninguna otra linea del bloque try.

e El codigo en el blogque except se activa solo cuando se ha encontrado una excepcién dentro del bloque
try. No hay forma de llegar por ningin otro medio.

e Cuando el bloque try o except se ejecutan con éxito, el control vuelve al proceso normal de ejecuciény
cualquier cédigo ubicado mas alla en el archivo fuente se ejecuta como si no hubiera pasado nada.

Ahora queremos hacerte una pregunta: ;Es ValueError la Unica forma en que el control podria caer dentro del
bloque except?

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
21/06/2022
10:25

info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655832316

Como lidiar con mas de una excepcion

La respuesta obvia es «no»: hay mas de una forma posible de plantear una excepcién. Por ejemplo, un usuario
puede ingresar cero como entrada, ;puedes predecir lo que sucedera a continuacién?

Si, tienes razén: la division colocada dentro de la invocacién de la funcién print() generard la excepcién
ZeroDivisionError. Como es de esperarse, el comportamiento del céddigo sera el mismo que en el caso
anterior: el usuario verd el mensaje «No se que hacer con...», lo que parece bastante razonable en este
contexto, pero también es posible que desees manejar este tipo de problema de una manera un poco diferente.

(Es posible? Por supuesto que lo es. Hay al menos dos enfoques que puedes implementar aqui.

El primero de ellos es simple y complicado al mismo tiempo: puedes agregar dos bloques try por separado,
uno que incluya la invocacion de la funcién input() donde se puede generar la excepcién ValueError, y el
segundo dedicado a manejar posibles problemas inducidos por la divisién. Ambos bloques try tendrian su
propio except, y de esa manera, tendrias un control total sobre dos errores diferentes.

Esta solucién es buena, pero es un poco larga: el cddigo se hincha innecesariamente. Ademas, no es el Unico
peligro que te espera. Toma en cuenta que dejar el primer bloque try-except deja mucha incertidumbre;
tendrds que agregar cddigo adicional para asegurarte de que el valor que ingresé el usuario sea seguro para
usar en la divisién. Asi es como una solucién aparentemente simple se vuelve demasiado complicada.

Dos excepciones después de un try.

value input('Ingresa un numero natural:

'El reciproco de', value, 'es' /int(value
ValueError:

'No se que hacer con', value
ZeroDivisionError:

'La divisidén entre cero no estd permitida en nuestro Universo.'

Como puedes ver, acabamos de agregar un segundo except. Esta no es la Unica diferencia; toma en cuenta
gue ambos except tienen nombres de excepcidn especificos. En esta variante, cada una de las excepciones
esperadas tiene su propia forma de manejar el error, pero se debe enfatizarse en que solo una de todas puede
interceptar el control; si se ejecuta una, todas las demas permanecen inactivas. Ademas, la cantidad de
excepciones no estd limitado: puedes especificar tantas o tan pocas como necesites, pero no se te olvide que
ninguna de las excepciones se puede especificar mas de una vez.

Pero esta todavia no es la Gltima palabra de Python sobre excepciones.

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655832316

Last update: 21/06/2022 10:25

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 07:28

https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m4?rev=1655832316

	Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos
	Puntos Clave: Tuplas
	EXTRA
	Puntos Clave: Diccionarios

	Excepciones
	Cuando los datos no son lo que deberían ser
	El Código Python
	La excepción confirma la regla
	Cómo lidiar con más de una excepción
	Dos excepciones después de un try.

