14/02/2026 16:54 1/4 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

Modulo 4 - Funciones, Tuplas, Diccionarios,
Exceptiones y Procesamiento de Datos

Modulo 4: Funciones
o Estructuracién de cédigo y el concepto de funcion.
o Invocacién de funciones y devolucién de resultados de una funcion.
o Alcance de nombres y sombreado de variables.
Modulo 4: Tuplas
o Tuplas y su propésito: construccién y uso de tuplas.
Modulo 4: Diccionarios
o Diccionarios y su propdsito: construccién y uso de diccionarios.
Modulo 4: Excepciones
o Introduccién a las excepciones en Python.

Excepciones

El lidiar con errores de programacién tiene (al menos) dos partes. La primera es cuando te metes en problemas
porque tu cddigo, aparentemente correcto, se alimenta con datos incorrectos. Por ejemplo, esperas que se
ingrese al cédigo un valor entero, pero tu usuario descuidado ingresa algunas letras al azar.

Puede suceder que tu cddigo termine en ese momento y el usuario se quede solo con un mensaje de error
conciso y a la vez ambiguo en la pantalla. El usuario estara insatisfecho y tu también deberias estarlo. Te
mostraremos cdmo proteger tu cédigo de este tipo de fallas y cémo no provocar la ira del usuario.

La segunda parte de lidiar con errores de programacién se revela cuando ocurre un comportamiento no
deseado del programa debido a errores que se cometieron cuando se estaba escribiendo el cédigo. Este tipo de
error se denomina cominmente «bug» (bicho en inglés), que es una manifestacién de una creencia bien
establecida de que, si un programa funciona mal, esto debe ser causado por bichos maliciosos que viven dentro
del hardware de la computadora y causan cortocircuitos u otras interferencias.

Esta idea no es tan descabellada como puede parecer: incidentes de este tipo eran comunes en tiempos en que
las computadoras ocupaban grandes pasillos, consumian kilovatios de electricidad y producian enormes
cantidades de calor. Afortunadamente, o no, estos tiempos se han ido para siempre y los Unicos errores que
pueden estropear tu cédigo son los que tl mismo sembraste en el cddigo. Por lo tanto, intentaremos mostrarte
cémo encontrar y eliminar tus errores, en otras palabras, cémo depurar tu cddigo.

Cuando los datos no son lo que deberian ser

Escribamos un fragmento de cddigo extremadamente trivial: leera un nimero natural (un entero no negativo) e
imprimira su reciproco. De esta forma, 2 se convertird en 0.5 (1/2) y 4 en 0.25 (1/4).

value = int(input('Ingresa un nimero natural: '
'El reciproco de', value, 'es' /value

(Hay algo que pueda salir mal? El cddigo es tan breve y compacto que no parece que vayamos a encontrar
ningun problema alli.

Parece que ya sabes hacia dénde vamos. Si, tienes razén: ingresar datos que no sean un nimero entero (que
también incluye ingresar nada) arruinara completamente la ejecucién del programa. Esto es lo que vera el
usuario del cédigo:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m4:funciones
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m4:tuplas
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m4:diccionarios
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m4:excepciones

Last
update:
21/06/2022
10:26

info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655832413

Traceback (most recent call last
File "code.py", line
value = int(input('Ingresa un numero natural: '
ValueError: invalid literal int base D!

Todas las lineas que muestra Python son significativas e importantes, pero la Ultima linea parece ser la mas
valiosa. La primera palabra de la linea es el nombre de la excepcion la cual provoca que tu cddigo se detenga.
Su nombre aqui es ValueError. El resto de la linea es solo una breve explicacidon que especifica con mayor
precision la causa de la excepcién ocurrida.

¢Cémo lo afrontas? ;Como proteges tu cddigo de la terminacién abrupta, al usuario de la decepcién y a ti mismo
de la insatisfaccién del usuario?

La primera idea que se te puede ocurrir es verificar si los datos proporcionados por el usuario son validos y
negarte a cooperar si los datos son incorrectos. En este caso, la verificacion puede basarse en el hecho de que
esperamos que la cadena de entrada contenga solo digitos.

Ya deberias poder implementar esta verificacidn y escribirla tu mismo, ;no es asi? También es posible
comprobar si la variable value es de tipo int (Python tiene un medio especial para este tipo de comprobaciones:
es un operador llamado is. La revisién en si puede verse de la siguiente manera:

type(value int

Su resultado es verdadero si el valor actual de la variable value es del tipo int.

Perdénanos si no dedicamos mas tiempo a esto ahora; encontraras explicaciones mas detalladas sobre el
operador is en un médulo del curso dedicado a la programacion orientada a objetos.

Es posible que te sorprendas al saber que no queremos que realices ninguna validacién preliminar de datos.
¢Por qué? Porque esta no es la forma que Python recomienda.

El Codigo Python

En el mundo de Python, hay una regla que dice: «Es mejor pedir perddn que pedir permiso».

Detengdmonos aqui por un momento. No nos malinterpretes, no queremos que apliques la regla en tu vida
diaria. No tomes el automovil de nadie sin permiso, con la esperanza de que puedas ser tan convincente que
evites la condena por lo ocurrido. La regla se trata de otra cosa.

En realidad, la regla dice: «es mejor manejar un error cuando ocurre que tratar de evitarlo».

«De acuerdo», puedes decir, «pero jcdmo debo pedir perdén cuando el programa finaliza y no queda nada que
mas por hacer?». Aqui es donde algo llamado excepcién entra en escena.

Es un lugar donde
tu puedes hacer algo
sin pedir permiso.

Es un espacio dedicado
exclusivamente para pedir perdén.

Puedes ver dos blogues aqui:

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 16:54

14/02/2026 16:54 3/4 Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos

e El primero, comienza con la palabra clave reservada try: este es el lugar donde se coloca el cédigo que
se sospecha que es riesgoso y puede terminar en caso de un error; nota: este tipo de error lleva por
nombre excepcidn, mientras que la ocurrencia de la excepcién se le denomina generar; podemos decir
gue se genera (o se generd) una excepcion.

* El sequndo, la parte del cédigo que comienza con la palabra clave reservada except: esta parte fue
disefiada para manejar la excepcién; depende de ti lo que quieras hacer aqui: puedes limpiar el desorden
o simplemente puede barrer el problema debajo de la alfombra (aungue se prefiere la primera solucién).

Entonces, podriamos decir que estos dos bloques funcionan asi:

¢ La palabra clave reservada try marca el lugar donde intentas hacer algo sin permiso.
¢ La palabra clave reservada except comienza un lugar donde puedes mostrar tu talento para disculparte
o0 pedir perdon.

Como puedes ver, este enfoque acepta errores (los trata como una parte normal de la vida del programa) en
lugar de intensificar los esfuerzos para evitarlos por completo.

La excepcion confirma la regla

Reescribamos el cédigo para adoptar el enfoque de Python para la vida.

value = input('Ingresa un nGmero natural: '
'ELl reciproco de', value, 'es' /int(value

'No se que hacer con', value

Resumamos lo que hemos hablado:

¢ Cualquier fragmento de cddigo colocado entre try y except se ejecuta de una manera muy especial:
cualquier error que ocurra aqui dentro no terminara la ejecucion del programa. En cambio, el control
saltard inmediatamente a la primera linea situada después de la palabra clave reservada except, y no
se ejecutard ninguna otra linea del bloque try.

¢ El cédigo en el bloque except se activa solo cuando se ha encontrado una excepcién dentro del bloque
try. No hay forma de llegar por ningin otro medio.

e Cuando el bloque try o except se ejecutan con éxito, el control vuelve al proceso normal de ejecucién y
cualquier cédigo ubicado mas alld en el archivo fuente se ejecuta como si no hubiera pasado nada.

Ahora queremos hacerte una pregunta: ;Es ValueError la Unica forma en que el control podria caer dentro del
bloque except?

Como lidiar con mas de una excepcion

La respuesta obvia es «no»: hay mas de una forma posible de plantear una excepcién. Por ejemplo, un usuario
puede ingresar cero como entrada, ;puedes predecir lo que sucedera a continuacion?

Si, tienes razén: la division colocada dentro de la invocacién de la funcién print() generara la excepcién
ZeroDivisionError. Como es de esperarse, el comportamiento del cédigo sera el mismo que en el caso
anterior: el usuario vera el mensaje «No se que hacer con...», o que parece bastante razonable en este
contexto, pero también es posible que desees manejar este tipo de problema de una manera un poco diferente.

¢Es posible? Por supuesto que lo es. Hay al menos dos enfoques que puedes implementar aqui.

El primero de ellos es simple y complicado al mismo tiempo: puedes agregar dos bloques try por separado,
uno que incluya la invocacién de la funcién input() donde se puede generar la excepcién ValueError, y el

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
21/06/2022
10:26

info:cursos:netacad:python:pelm4 https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pelm4?rev=1655832413

segundo dedicado a manejar posibles problemas inducidos por la divisién. Ambos bloques try tendrian su
propio except, y de esa manera, tendrias un control total sobre dos errores diferentes.

Esta solucién es buena, pero es un poco larga: el cddigo se hincha innecesariamente. Ademas, no es el Unico
peligro que te espera. Toma en cuenta que dejar el primer bloque try-except deja mucha incertidumbre;
tendrds que agregar cédigo adicional para asegurarte de que el valor que ingresé el usuario sea seguro para
usar en la divisidn. Asi es como una solucién aparentemente simple se vuelve demasiado complicada.

Dos excepciones después de un try.

value = input('Ingresa un numero natural: '

'"El reciproco de', value, 'es' /int(value
ValueError:

'No se que hacer con', value
ZeroDivisionError:

'"La divisién entre cero no estd permitida en nuestro Universo.'

Como puedes ver, acabamos de agregar un segundo except. Esta no es la Unica diferencia; toma en cuenta
gue ambos except tienen nombres de excepcion especificos. En esta variante, cada una de las excepciones
esperadas tiene su propia forma de manejar el error, pero se debe enfatizarse en que solo una de todas puede
interceptar el control; si se ejecuta una, todas las demas permanecen inactivas. Ademas, la cantidad de
excepciones no esta limitado: puedes especificar tantas o tan pocas como necesites, pero no se te olvide que
ninguna de las excepciones se puede especificar mas de una vez.

Pero esta todavia no es la Ultima palabra de Python sobre excepciones.

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:

Last update: 21/06/2022 10:26

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 16:54

https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe1m4?rev=1655832413

	Modulo 4 - Funciones, Tuplas, Diccionarios, Exceptiones y Procesamiento de Datos
	Excepciones
	Cuando los datos no son lo que deberían ser
	El Código Python
	La excepción confirma la regla
	Cómo lidiar con más de una excepción
	Dos excepciones después de un try.

