16/12/2025 14:52 1/20 Modulo 1 (intermedio): Médulos

Modulo 1 (intermedio): Mddulos

El cédigo de computadora tiene una tendencia a crecer. Podemos decir que el cédigo que no crece
probablemente sea completamente inutilizable o esté abandonado. Un cddigo real, deseado y ampliamente
utilizado se desarrolla continuamente, ya que tanto las demandas de los usuarios como sus expectativas se
desarrollan de manera diferente.

Un cédigo que no puede responder a las necesidades de los usuarios se olvidara rapidamente y se reemplazara
instantdneamente con un cddigo nuevo, mejor y mas flexible. Se debe estar preparado para esto, y nunca
pienses que tus programas estan terminados por completo. La finalizacién es un estado de transicién y
generalmente pasa rapidamente, después del primer informe de error. Python en si es un buen ejemplo de
cémo actla esta regla.

El codigo creciente es, de hecho, un problema creciente. Un cddigo mas grande siempre significa un
mantenimiento mas dificil. La bdsqueda de errores siempre es mas facil cuando el cédigo es mds pequefio (al
igual que encontrar una rotura mecanica es mas simple cuando la maquinaria es méas simple y pequefia).

Ademads, cuando se espera que el cddigo que se estd creando sea realmente grande (puedes usar el nimero
total de lineas de cddigo como una medida Util, pero no muy precisa, del tamafo del cédigo) entonces, se
deseard, 0 mas bien, habra la necesidad de dividirlo en muchas partes, implementado en paralelo por unos
cuantos, una docena, varias docenas o incluso varios cientos de desarrolladores.

Por supuesto, esto no se puede hacer usando un archivo fuente grande, el cual esta siendo editado por todos
los programadores al mismo tiempo. Esto seguramente conducird a un desastre.

Si se desea que dicho proyecto de software se complete con éxito, se deben tener los medios que permitan:

¢ Dividir todas las tareas entre los desarrolladores.
¢ Después, unir todas las partes creadas en un todo funcional.

Por ejemplo, un determinado proyecto se puede dividir en dos partes principales:

¢ La interfaz de usuario (la parte que se comunica con el usuario mediante widgets y una pantalla grafica).
e La ldgica (la parte que procesa los datos y produce resultados).

Cada una de estas partes se puede (muy probablemente) dividir en otras mas pequefas, y asi sucesivamente.
Tal proceso a menudo se denomina descomposicidn.

Por ejemplo, si te pidieran organizar una boda, no harfas todo tu mismo: encontrarias una serie de profesionales
y dividirias la tarea entre todos.

¢Cémo se divide una pieza de software en partes separadas pero cooperantes? Esta es la pregunta. Los
maodulos son la respuesta.

¢Como hacer uso de un modulo?

Entonces, ;qué es un médulo? El Tutorial de Python lo define como un archivo que contiene definiciones y
sentencias de Python, que se pueden importar mds tarde y utilizar cuando sea necesario.

El manejo de los médulos consta de dos cuestiones diferentes:

o El primero (probablemente el mas comdn) ocurre cuando se desea utilizar un médulo ya existente,
escrito por otra persona o creado por el programador mismo en algin proyecto complejo: en este caso,
se considera al programador como el usuario del médulo.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last update:
23/06/2022 info:cursos:netacad:python:pe2ml:modulos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1:modulos
02:21

¢ El segundo ocurre cuando se desea crear un nuevo médulo, ya sea para uso propio o para facilitar la vida
de otros programadores: aqui tu eres el proveedor del médulo.

Discutamos ambos por separado.

En primer lugar, un médulo se identifica por su nombre. Si se desea utilizar cualquier mddulo, se necesita
saber su nombre. Se entrega una cantidad (bastante grande) de médulos junto con Python. Se puede pensar en
ellos como una especie de «equipamiento adicional de Python».

Todos estos mddulos, junto con las funciones integradas, forman la Biblioteca Estandar de Python - un tipo
especial de biblioteca donde los médulos desempefian el papel de libros (incluso podemos decir que las
carpetas desempefian el papel de estanterias). Si deseas ver la lista completa de todos los «volimenes»
recopilados en esa biblioteca, se puede encontrar aqui: https://docs.python.org/3/library/index.html.

Cada méddulo consta de entidades (como un libro consta de capitulos). Estas entidades pueden ser funciones,
variables, constantes, clases y objetos. Si se sabe como acceder a un médulo en particular, se puede utilizar
cualquiera de las entidades que almacena.

funciones matematicas

nombre
del modulo

Comencemos la discusién con uno de los médulos mas utilizados, el que lleva por nombre math. Su nombre
habla por si mismo: el mddulo contiene una rica coleccién de entidades (no solo funciones) que permiten a un
programador implementar efectivamente célculos que exigen el uso de funciones matematicas, como sen() o

log().

Importando un médulo

Para que un mdédulo sea utilizable, hay que importarlo (piensa en ello como sacar un libro del estante). La
importacién de un médulo se realiza mediante una instruccién llamada import. Nota: import es también una
palabra clave reservada (con todas sus implicaciones).

Supongamos que deseas utilizar dos entidades proporcionadas por el médulo math:

¢ Un simbolo (constante) que representa un valor preciso (tan preciso como sea posible usando aritmética
de punto flotante doble) de i (aunque usar una letra griega para nombrar una variable es totalmente
posible en Python, el simbolo se llama pi: es una solucién mas conveniente, especialmente para esa
parte del mundo que ni tiene ni va a usar un Teclado Griego).

¢ Una funcién llamada sin() (el equivalente informatico de la funcién matematica seno).

Ambas entidades estan disponibles a través del médulo math, pero la forma en que se pueden usar depende en
gran medida de como se haya realizado la importacién.

https://miguelangel.torresegea.es/wiki/ Printed on 16/12/2025 14:52


https://docs.python.org/3/library/index.html

16/12/2025 14:52 3/20 Modulo 1 (intermedio): Médulos

La forma mas sencilla de importar un médulo en particular es usar la instruccién para importar de la siguiente
manera:

math

La clausula contiene:

¢ La palabra reservada import.
¢ El nombre del médulo que se va a importar.

La instruccién puede colocarse en cualquier parte del cédigo, pero debe colocarse antes del primer uso de
cualquiera de las entidades del médulo.

Si se desea (o se tiene que) importar mas de un mddulo, se puede hacer repitiendo la cldusula import, o
listando los médulos despues de la palabra reservada import, por ejemplo:

math
sys

0 enumerando los médulos después de la palabra clave reservada import, como aqui:
math, sys

La instruccién importa dos médulos, primero uno llamado math y luego un segundo llamado sys.
La lista de médulos puede ser arbitrariamente larga.

Para continuar, debes familiarizarte con un término importante: namespace. No te preocupes, no entraremos
en detalles: esta explicacién serd lo mas breve posible.

Un namespace es un espacio (entendido en un contexto no fisico) en el que existen algunos nombres y los
nombres no entran en conflicto entre si (es decir, no hay dos objetos diferentes con el mismo nombre).
Podemos decir que cada grupo social es un namespace - el grupo tiende a nombrar a cada uno de sus
miembros de una manera Unica (por ejemplo, los padres no darian a sus hijos el mismo nombre).

Carl Adam Natalie Marie

Judy Pierre Frank

James Bruce

A Janet
nna Michael Sarah

Esta singularidad se puede lograr de muchas maneras, por ejemplo, mediante el uso de apodos junto con los
nombres (funcionard dentro de un grupo pequefio como una clase en una escuela) o asignando identificadores
especiales a todos los miembros del grupo (el nimero de Seguro Social de EE. UU. es un buen ejemplo de tal
practica).

Dentro de un determinado namespace, cada nombre debe permanecer unico. Esto puede significar que
algunos nombres pueden desaparecer cuando cualquier otra entidad de un nombre ya conocido ingresa al
namespace. Mostraremos como funciona y como controlarlo, pero primero, volvamos a las importaciones.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last update:
23/06/2022 info:cursos:netacad:python:pe2ml:modulos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1:modulos
02:21

Si el médulo de un nombre especificado existe y es accesible (un médulo es de hecho un archivo fuente de
Python), Python importa su contenido, se hacen conocidos todos los nombres definidos en el médulo,
pero no ingresan al namespace del cédigo.

Esto significa que puedes tener tus propias entidades llamadas sin o pi y no seran afectadas en alguna manera
por la importacién.

En este punto, es posible que te estes preguntando como acceder al pi el cual viene del médulo math.
Para hacer esto, se debe de mandar llamar el pi con el nombre del médulo original.

Observa el fragmento a continuacidn, esta es la forma en que se habilitan los nombres de pi y sin con el nombre
de su modulo de origen:

math.pi
math.sin

Es sencillo, se pone:

¢ El nombre del médulo (math).
¢ Un punto.
¢ El nombre de la entidad (pi).

Tal forma indica claramente el namespace en el que existe el nombre.

Nota: el uso de esto es obligatorio si un médulo ha sido importado con la instruccién import. No importa si
alguno de los nombres del cédigo y del namespace del médulo estan en conflicto o no.

Este primer ejemplo no serd muy avanzado: solo se desea imprimir el valor de sin(¥%zm).

math
math.sin(math.pi/

El cédigo genera el valor esperado: 1.0.

Nota: el eliminar cualquiera de las dos indicaciones del nombre del médulo hara que el cédigo sea erréneo. No
hay otra forma de entrar al namespace de math si se hizo lo siguiente:

math

Ahora te mostraremos cdémo pueden dos namespaces (el tuyo y el del médulo) pueden coexistir.

math
sin(x
* X pi:
None
pi
sin(pi/

math.sin(math.pi/

Hemos definido el nuestro propio pi y sin aqui.

https://miguelangel.torresegea.es/wiki/ Printed on 16/12/2025 14:52



16/12/2025 14:52 5/20 Modulo 1 (intermedio): Médulos

Ejecuta el programa. El cédigo debe producir la siguiente salida:

0.99999999
1.0

Como puedes ver, las entidades no se afectan entre si.

En el sequndo método, la sintaxis del import sefiala con precisién que entidad (o entidades) del médulo son
aceptables en el cédigo:

math pi

La instruccién consta de los siguientes elementos:

La palabra clave reservada from.

El nombre del médulo a ser (selectivamente) importado.

La palabra clave reservada import.

El nombre o lista de nombres de la entidad o entidades las cuales estan siendo importadas al
namespace.

La instruccidn tiene este efecto:

¢ Las entidades listadas son las Unicas que son importadas del médulo indicado.
¢ Los nombres de las entidades importadas pueden ser accedidas dentro del cédigo sin especificar el
nombre del médulo de origen.

Nota: no se importan otras entidades, Unicamente las especificadas. Ademas, no se pueden importar entidades
adicionales utilizando una linea como esta:

math.e
Esto ocasionard un error, (e es la constante de Euler: 2.71828...).
Reescribamos el cddigo anterior para incorporar esta nueva técnica.
math sin, pi
sin(pi/

El resultado debe de ser el mismo que el anterior, se han empleado las mismas entidades: 1.0. Copia y pega el
codigo en el editor, y ejecuta el programa.

from math import sin, pi
print(sin(pi / 2))

pi = 3.14

def sin(x):
if 2 * x == pi:
return 0.99999999
else:
return None

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last update:
23/06/2022 info:cursos:netacad:python:pe2ml:modulos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1:modulos
02:21

print(sin(pi / 2))

La linea 01: lleva a cabo la importacién selectiva.

La linea 03: hace uso de las entidades importadas y obtiene el resultado esperado (1.0).

La lineas 05 a la 12: redefinen el significado de pi y sin - en efecto, reemplazan las definiciones originales
(importadas) dentro del namespace del cédigo.

La linea 15: retorna 0.99999999, lo cual confirma nuestras conclusiones.

Hagamos otra prueba. Observa el cddigo a continuacién:

pi = 3.14

def sin(x):
if 2 * x == pi:
return 0.99999999
else:
return None
print(sin(pi / 2))

from math import sin, pi

print(sin(pi / 2))

Aqui, se ha invertido la secuencia de las operaciones del cédigo:

Las lineas del 01 al 08: definen nuestro propio pi y sin.

La linea 11: hace uso de ellas (0.99999999 aparece en pantalla).

La linea 13: lleva a cabo la importacién - los simbolos importados reemplazan sus definiciones anteriores
dentro del namespace.

La linea 15: retorna 1.0 como resultado.

Importando un médulo: *

En el tercer método, la sintaxis del import es una forma mas agresiva que la presentada anteriormente:
module W

Como puedes ver, el nombre de una entidad (o la lista de nombres de entidades) se reemplaza con un solo
asterisco (*).

Tal instrucciéon importa todas las entidades del médulo indicado.
(Es conveniente? Si, lo es, ya que libera del deber de enumerar todos los nombres que se necesiten.

(Es inseguro? Si, a menos que conozcas todos los nombres proporcionados por el médulo, es posible que no
puedas evitar conflictos de nombres. Trata esto como una solucién temporal e intenta no usarlo en un
cédigo regular.

https://miguelangel.torresegea.es/wiki/ Printed on 16/12/2025 14:52



16/12/2025 14:52 7/20 Modulo 1 (intermedio): Médulos

Importando un médulo: la palabra clave reservada as

Si se importa un mddulo y no se esta conforme con el nombre del médulo en particular (por ejemplo, si es el
mismo que el de una de sus entidades ya definidas) puede darsele otro nombre: esto se llama aliasing o
renombrado.

Aliasing (renombrado) hace que el mddulo se identifique con un nombre diferente al original. Esto también
puede acortar los nombres originales.

La creacién de un alias se realiza junto con la importacién del médulo, y exige la siguiente forma de la
instruccion import:

module alias

El «<module» identifica el nombre del médulo original mientras que el «alias» es el nombre que se desea usar en
lugar del original.

Nota: as es una palabra clave reservada.
Si necesitas cambiar la palabra math, puedes introducir tu propio nombre, como en el ejemplo:
math m
m.sin(m.pi/

Nota: después de la ejecucidn exitosa de una importacion con alias, el nombre original del médulo se vuelve
inaccesible y no debe ser utilizado.

A su vez, cuando usa la variante from module import name y se necesita cambiar el nombre de la entidad, se
crea un alias para la entidad. Esto hara que el nombre sea reemplazado por el alias que se elija.

Asi es como se puede hacer:
module name alias

Como anteriormente, el nombre original (sin alias) se vuelve inaccesible.

La frase name as alias puede repetirse: puedes emplear comas para separar las frases, como a continuacién:
module n a, m b, o C
El ejemplo puede parecer un poco extrafio, pero funciona:

codepython
math pi PI, sin sine

print(sine(Pl/2)) </code>

Ahora etds familiarizado con los conceptos bdsicos uso de médulos. Permitenos
mostrarte algunos médulos y algunas de sus entidades Utiles.

Punt

os Claves 1. Si deseas importar un médulo como un todo, puedes hacerlo usando la sentencia import
nombre_del_mddulo. Puedes importar mas de un médulo a la vez utilizando una lista separada por comas. Por
ejemplo:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last update:
23/06/2022 info:cursos:netacad:python:pe2ml:modulos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1:modulos
02:21

code python
modlimport mod2, mod3, mod4

Aunque la U</code>Itima forma no se recomienda por razones estilisticas, y es mejor y mas bonito expresar la
misma intencién de una f rma mas detallada y explicita, como por ejemplo:

mod2
mod3
mod4

2. Si un mddulo se importa de la manera anterior y desea acceder a cualquiera de sus entidades, debes
anteponer el nombre de la entidad empleando la notacién con punto. Por ejemplo:

my module
result = my module.my function(my module.my data
El fragmento de cédigo utiliza dos entidades que provienen del médulo my_module: una funcién llamada
my_function() y una variable con el nombre my_data. Ambos nombres deben tener el prefijo my_module.

Ninguno de los nombres de entidad importados entra en conflicto con los nombres idénticos existentes en el
namespace de tu cédigo.

3. Se te permite no solo importar un médulo como un todo, sino también importar solo entidades individuales
de él. En este caso, las entidades importadas no deben especificar el prefijo cuando son empleadas. Por
ejemplo:

module my function, my data

result = my function(my data

La forma anterior, a pesar de su atractivo, no se recomienda debido al peligro de causar conflictos con los
nombres derivados de la importacién del namespace del cédigo.

4. La forma mas general de la sentencia anterior te permite importar todas las entidades ofrecidas por un
madulo:

my module ks
result = my function(my data

Nota: la variante de esta importacién no se recomienda debido a las mismas razones que antes (la amenaza de
un conflicto de nombres es alin mas peligrosa aqui).

5. Puede cambiar el nombre de la entidad importada «sobre la marcha» utilizando la frase as del import. Por
ejemplo:

module my function fun, my data dat

result fun(dat

Maddulos utiles

https://miguelangel.torresegea.es/wiki/ Printed on 16/12/2025 14:52



16/12/2025 14:52 9/20 Modulo 1 (intermedio): Médulos

Trabajando con médulos estandar

Antes de comenzar a revisar algunos médulos estandar de Python, veamos la funcién dir(). No tiene nada que
ver con el comando dir de las terminales de Windows o Unix. El comando dir() no muestra el contenido de un
directorio o carpeta de disco, pero no se puede negar que hace algo similar: puede revelar todos los nombres
proporcionados a través de un médulo en particular.

Existe una condicién: el médulo debe haberse importado previamente como un todo (es decir, utilizar la
instruccion import module - from module no es suficiente).

La funcién devuelve una lista ordenada alfabéticamente la cual contiene todos los nombres de las entidades
disponibles en el médulo:

dir(module

Nota: Si el nombre del mddulo tiene un alias, debes usar el alias, no el nombre original.
Usar la funcién dentro de un script normal no tiene mucho sentido, pero aun asi, es posible.

Por ejemplo, se puede ejecutar el siguiente cédigo para imprimir los nombres de todas las entidades dentro del
mdédulo math:

math

name dir(math
name, end="\t"

El cédigo del ejemplo deberia producir el siguiente resultado:

__doc loader __name __package __spec_ acos acosh asin
asinh atan atan2 atanh ceil copysign cos cosh degrees e
erf erfc exp expml fabs factorial floor fmod frexp fsum
gamma hypot isfinite isinf isnan ldexp lgamma log logl0
loglp log?2 modf pi pow radians sin sinh sqrt tan tanh
trunc

¢Has notado los nombres extrafios que comienzan con __ al inicio de la lista? Se hablard mas sobre ellos cuando
hablemos sobre los problemas relacionados con la escritura de médulos propios.

Algunos de los nombres pueden traer recuerdos de las lecciones de matematicas, y probablemente no tendras
ningun problema en adivinar su significado.

El emplear la funcién dir() dentro de un cédigo puede no parecer muy Util; por lo general, se desea conocer el
contenido de un médulo en particular antes de escribir y ejecutar el cédigo.

Afortunadamente, se puede ejecutar la funcién directamente en la consola de Python (IDLE), sin necesidad de
escribir y ejecutar un script por separado.

Funciones seleccionadas del méodulo math

Comencemos con una vista previa de algunas de las funciones proporcionadas por el médulo math.

Se han elegido algunas arbitrariamente, pero esto no significa que las funciones no mencionadas aqui sean
menos significativas. Tdémate el tiempo para revisar las demas por ti mismo: no tenemos el espacio ni el tiempo
para hablar de todas a detalle.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last update:
23/06/2022 info:cursos:netacad:python:pe2ml:modulos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1:modulos
02:21

El primer grupo de funciones de médulo math estan relacionadas con trigonometria:

® sin(x) - el seno de x.
e cos(x) - el coseno de x.
¢ tan(x) - la tangente de x.

Todas estas funciones toman un argumento (una medida de angulo expresada en radianes) y devuelven el
resultado apropiado (ten cuidado con tan() - no todos los argumentos son aceptados).

Por supuesto, también estan sus versiones inversas:

e asin(x) - el arcoseno de x.
® acos(x) — el arcocoseno de x.
¢ atan(x) - el arcotangente de x.

Estas funciones toman un argumento (verifican que sea correcto) y devuelven una medida de un dngulo en
radianes.

Para trabajar eficazmente con mediciones de angulos, el médulo math proporciona las siguientes entidades:

e pi - una constante con un valor que es una aproximacién de .
e radians(x) - una funcién que convierte x de grados a radianes.
e degrees(x) -» una funcién que convierte x de radianes a grados.

El programa de ejemplo no es muy sofisticado, pero jpuedes predecir sus resultados?
math pi, radians, degrees, sin, cos, tan, asin
ad

ar radians(ad
ad degrees(ar

ad .

ar pi / 2.

sin(ar) / cos(ar tan(ar
asin(sin(ar ar

Ademas de las funciones circulares (enumeradas anteriormente), el médulo math también contiene un conjunto
de sus analogos hiperbdlicos:

e sinh(x) - el seno hiperbdlico.

e cosh(x) - el coseno hiperbdlico.

¢ tanh(x) - la tangente hiperbdlico.

e asinh(x) - el arcoseno hiperbdlico.

e acosh(x) - el arcocoseno hiperbdlico.

¢ atanh(x) - el arcotangente hiperbdlico.

Existe otro grupo de las funciones math relacionadas con la exponenciacion:

e e - una constante con un valor que es una aproximacién del nimero de Euler (e).
exp(x) = encontrar el valor de ex.

log(x) — el logaritmo natural de x.

log(x, b) — el logaritmo de x con base b.

log10(x) — el logaritmo decimal de x (mas preciso que log(x, 10)).

log2(x) - el logaritmo binario de x (mas preciso que log(x, 2)).

Nota: la funcién pow():

https://miguelangel.torresegea.es/wiki/ Printed on 16/12/2025 14:52



16/12/2025 14:52 11/20 Modulo 1 (intermedio): Médulos

e pow(x, y) = encuentra el valor de xy (toma en cuenta los dominios).
Esta es una funcion incorporada y no se tiene que importar.

El dltimo grupo consta de algunas funciones de propdsito general como:

ceil(x) » devuelve el entero mas pequefio mayor o igual que x.

floor(x) - el entero mas grande menor o igual que x.

trunc(x) — el valor de x truncado a un entero (ten cuidado, no es equivalente a ceil o floor).

factorial(x) - devuelve x! (x tiene que ser un valor entero y no negativo).

hypot(x, y) = devuelve la longitud de la hipotenusa de un triangulo rectangulo con las longitudes de los
catetos iguales a (x) y (y) (lo mismo que sqrt(pow(x, 2) + pow(y, 2)) pero mas preciso).

Analiza el programa cuidadosamente.

math ceil, floor, trunc

floor(x floor(y
floor(-x floor(-y
ceil(x), ceill(y
ceil(-x), ceil(-y
trunc(x trunc(y
trunc(-x trunc(-y

Demuestra las diferencias fundamentales entre ceil(), floor() y trunc().

¢(Existe aleatoriedad real en las computadoras?

Otro mddulo que vale la pena mencionar es el que se llama random.
Ofrece algunos mecanismos que permiten operar con niimeros pseudoaleatorios.

Toma en cuenta el prefijo pseudo - los nimeros generados por los médulos pueden parecer aleatorios en el
sentido de que no se pueden predecir, pero no hay que olvidar que todos se calculan utilizando algoritmos muy
refinados.

Los algoritmos no son aleatorios, son deterministas y predecibles. Solo aquellos procesos fisicos que se salgan
completamente de nuestro control (como la intensidad de la radiacién cdsmica) pueden usarse como fuente de
datos aleatorios reales. Los datos producidos por computadoras deterministas no pueden ser aleatorios de
ninguna manera.

Un generador de nimeros aleatorios toma un valor llamado semilla, lo trata como un valor de entrada, calcula
un namero «aleatorio» basado en él (el método depende de un algoritmo elegido) y produce una nueva
semilla.

La duracion de un ciclo en el que todos los valores semilla son Unicos puede ser muy largo, pero no es infinito:
tarde o temprano los valores iniciales comenzardn a repetirse y los valores generadores también se repetiran.
Esto es normal. Es una caracteristica, no un error.

El valor de la semilla inicial, establecido durante el inicio del programa, determina el orden en que apareceran
los valores generados.

El factor aleatorio del proceso puede ser aumentado al establecer la semilla tomando un nimero de la

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last update:
23/06/2022 info:cursos:netacad:python:pe2ml:modulos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1:modulos
02:21

hora actual - esto puede garantizar que cada ejecucién del programa comience desde un valor semilla
diferente (por lo tanto, usara diferentes nimeros aleatorios).

Afortunadamente, Python realiza dicha inicializacién al importar el médulo.

Funciones seleccionadas del moédulo random

La funcién random

La funcién general llamada random() (no debe confundirse con el nombre del médulo) produce un nimero

flotante x entre el rango (0.0, 1.0) - en otras palabras: (0.0 « x < 1.0).

El programa de ejemplo a continuacién producira cinco valores pseudoaleatorios, ya que sus valores estan
determinados por el valor semilla actual (bastante impredecible), no puedes adivinarlos:

random random

i range
random

Ejecuta el programa. Esto es lo que tenemos:

0.9535768927411208
0.5312710096244534
0.8737691983477731
0.5896799172452125
0.02116716297022092
salida de muestra

La funcidn seed
La funcién seed() es capaz de directamente establecer la semilla del generador. Te mostramos dos de sus
variantes:

e seed() - establece la semilla con la hora actual.
e seed(int_value) - establece la semilla con el valor entero int_value.

Hemos modificado el programa anterior; de hecho, hemos eliminado cualquier rastro de aleatoriedad del
cédigo:

random random, seed
seed

i range
random

Debido al hecho de que la semilla siempre se establece con el mismo valor, la secuencia de valores generados
siempre se ve igual.

Ejecuta el programa. Esto es lo que tenemos:

https://miguelangel.torresegea.es/wiki/ Printed on 16/12/2025 14:52



16/12/2025 14:52 13/20 Modulo 1 (intermedio): Médulos

0.844421851525
0.75795440294

0.420571580831
0.258916750293
0.511274721369

Y ta?
Nota: tus valores pueden ser ligeramente diferentes si tu sistema utiliza aritmética de punto flotante mas
precisa 0 menos precisa, pero la diferencia se vera bastante lejos del punto decimal.

Las funciones randrange y randint

Si deseas valores aleatorios enteros, una de las siguientes funciones encajaria mejor:

randrange(fin)

randrange(inico, fin)
randrange(inicio, fin, incremento)
randint(izquierda, derecha)

Las primeras tres invocaciones generardn un valor entero tomado (pseudoaleatoriamente) del rango:
¢ range(fin)
¢ range(inicio, fin)
¢ range(inicio, fin, incremento)

Toma en cuenta la exclusion implicita del lado derecho.

La Ultima funcién es equivalente a randrange(izquierda, derecha+1) - genera el valor entero i, el cual cae en el
rango [izquierda, derecha] (sin exclusién en el lado derecho).

Este programa generara una linea que consta de tres ceros y un cero o un uno en el cuarto lugar.

random randrange, randint
randrange end=" "'

randrange end=" "
randrange end=" "
randint

Las funciones anteriores tienen una desventaja importante: pueden producir valores repetidos incluso si el
nlimero de invocaciones posteriores no es mayor que el rango especificado.

Es muy probable que el programa genere un conjunto de nimeros en el que algunos elementos no sean Unicos.
random randint

i range
randint end=","

Esto es lo que se obtuvo al ejecutarlo:

9141514'51819’41814'

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last update:
23/06/2022 info:cursos:netacad:python:pe2ml:modulos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1:modulos
02:21

Las funciones choice y sample

Como puedes ver, esta no es una buena herramienta para generar nimeros para la loteria. Afortunadamente,
existe una mejor solucién que escribir tu propio cédigo para verificar la singularidad de los nimeros
«sorteados».

Es una funcion con el nombre de choice:

¢ choice(secuencia)
¢ sample(secuencia, elementos_a_elegir=1)

La primera variante elige un elemento «aleatorio» de la secuencia de entrada y lo devuelve.

El segundo crea una lista (una muestra) que consta del elemento elementos_a_elegir (que por defecto es 1)
«sorteado» de la secuencia de entrada.

En otras palabras, la funcién elige algunos de los elementos de entrada, devolviendo una lista con la eleccién.
Los elementos de la muestra se colocan en orden aleatorio. Nota que elementos_a_elegir no debe ser mayor
que la longitud de la secuencia de entrada.

Observa el codigo a continuacion:
random choice, sample
my list
choice(my list
sample(my list
sample(my list
Nuevamente, la salida del programa no es predecible. Nuestros resultados se ven asi:
4

(3, 1, 8, 9, 10]
(10, 8, 5, 1, 6, 4, 3, 9, 7, 2]

Platform

A veces, puede ser necesario encontrar informacién no relacionada con Python. Por ejemplo, es posible que
necesites conocer la ubicacién de tu programa dentro del entorno de la computadora.

Imagina el entorno de tu programa como una pirdmide que consta de varias capas o plataformas.

https://miguelangel.torresegea.es/wiki/ Printed on 16/12/2025 14:52


https://miguelangel.torresegea.es/wiki/_detail/info:cursos:netacad:python:pe2m1:pasted:20220623-020604.png?id=info%3Acursos%3Anetacad%3Apython%3Ape2m1%3Amodulos

16/12/2025 14:52 15/20 Modulo 1 (intermedio): Médulos

tu codigo

Sistema Operativo

Las capas son:

¢ El codigo (en ejecucién) se encuentra en la parte superior.

¢ Python (mejor dicho, su entorno de ejecucion) se encuentra directamente debajo de él.

¢ La siguiente capa de la pirdmide se llena con el SO (sistema operativo): el entorno de Python proporciona
algunas de sus funcionalidades utilizando los servicios del sistema operativo. Python, aunque es muy
potente, no es omnipotente: se ve obligado a usar muchos ayudantes si va a procesar archivos o
comunicarse con dispositivos fisicos.

e La capa mas inferior es el hardware: el procesador (o procesadores), las interfaces de red, los dispositivos
de interfaz humana (ratones, teclados, etc.) y toda otra maquinaria necesaria para hacer funcionar la
computadora: el sistema operativo sabe como emplearlos y utiliza muchos trucos para trabajar con todas
las partes en un ritmo constante.

Esto significa que algunas de las acciones del programa tienen que recorrer un largo camino para ejecutarse
con éxito, imagina que:

¢ Tu cddigo quiere crear un archivo, por lo que invoca una de las funciones de Python.

¢ Python acepta la orden, la reorganiza para cumplir con los requisitos del sistema operativo local, es
como poner el sello «aprobado» en una solicitud y lo envia (esto puede recordarte una cadena de
mando).

e EI SO comprueba si la solicitud es razonable y vélida (por ejemplo, si el nombre del archivo se ajusta a
algunas reglas de sintaxis) e intenta crear el archivo. Tal operacién, aparentemente es muy simple, no es
atémica: consiste de muchos pasos menores tomados por:

¢ El hardware, el cual es responsable de activar los dispositivos de almacenamiento (disco duro,
dispositivos de estado sélido, etc.) para satisfacer las necesidades del sistema operativo.

Por lo general, no eres consciente de todo ese alboroto: quieres que se cree el archivo y eso es todo.

Pero a veces quieres saber mas, por ejemplo, el nombre del sistema operativo que aloja Python y algunas
caracteristicas que describen el hardware que aloja el sistema operativo.

Hay un médulo que proporciona algunos medios para permitir saber dénde se encuentra y qué componentes
funcionan. El médulo se llama platform. Veamos algunas de las funciones que brinda para ti.

Funciones seleccionadas del médulo platform

La funcién platform

El médulo platform permite acceder a los datos de la plataforma subyacente, es decir, hardware, sistema
operativo e informacidn sobre la versiéon del intérprete.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last update:
23/06/2022 info:cursos:netacad:python:pe2ml:modulos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1:modulos
02:21

Existe también una funcién que puede mostrar todas las capas subyacentes en un solo vistazo, llamada
platform. Simplemente devuelve una cadena que describe el entorno; por lo tanto, su salida esta mas dirigida a
los humanos que al procesamiento automatizado (lo veras pronto).

Asi es como se puede invocar:
platform(aliased False, terse False

Y ahora:

e aliased - cuando se establece a True (o cualquier valor distinto a cero) puede hacer que la funcién
presente los nombres de capa subyacentes alternativos en lugar de los comunes.

e terse —» cuando se establece a True (o cualquier valor distinto a cero) puede convencer a la funcién de
presentar una forma mas breve del resultado (si lo fuera posible).

Ejecutamos el programa usando tres plataformas diferentes, esto es lo que se obtuvo:

Intel x86 + Windows ® Vista (32 bit):

Windows-Vista-6.0.6002-SP2
Windows-Vista-6.0.6002-SP2
Windows-Vista

Intel x86 + Gentoo Linux (64 bit):

Linux-3.18.62-9g6-x86 64-Intel-R- Core-TM- i3-2330M CPU @ 2.20GHz-with-gentoo-2.3
Linux-3.18.62-9g6-x86 64-Intel-R- Core-TM- i3-2330M CPU @ 2.20GHz-with-gentoo-2.3
Linux-3.18.62-96-x86 64-Intel-R- Core-TM- i3-23306M CPU @ 2.20GHz-with-glibc2.3.4

Raspberry P12 + Raspbian Linux (32 bit):

Linux-4.4.0-1-rpi2-armv71-with-debian-9.0
Linux-4.4.0-1-rpi2-armv71l-with-debian-9.0
Linux-4.4.0-1-rpi2-armv71l-with-glibc2.9

También puedes ejecutar el programa en el IDLE de tu maquina local para verificar que salida tendra:

platform platform

platform
platform
platform

La funcion machine

En ocasiones, es posible que solo se desee conocer el nombre genérico del procesador que ejecuta el sistema
operativo junto con Python y el cddigo, una funcién llamada machine() te lo dird. Como anteriormente, la
funcién devuelve una cadena.

Nuevamente, ejecutamos el programa en tres plataformas diferentes:

Intel x86 + Windows ® Vista (32 bit):

https://miguelangel.torresegea.es/wiki/ Printed on 16/12/2025 14:52



16/12/2025 14:52 17/20

Modulo 1 (intermedio): Médulos

x86
Intel x86 + Gentoo Linux (64 bit):
x86 64
Raspberry P12 + Raspbian Linux (32 bit):
armv7l
platform machine

machine

La funcidn processor

La funcién processor() devuelve una cadena con el nombre real del procesador (si lo fuese posible).

Una vez mas, ejecutamos el programa en tres plataformas diferentes:

Intel x86 + Windows ® Vista (32 bit):

x86

Intel x86 + Gentoo Linux (64 bit):

Intel(R) Core(TM) i3-2330M CPU @ 2.20GHz

Raspberry P12 + Raspbian Linux (32 bit):
armv7l

platform processor

processor

La funcién system

Una funcién llamada system() devuelve el nombre genérico del sistema operativo en una cadena.

Nuestras plataformas de ejemplo se presentan de la siguiente manera:

Intel x86 + Windows ® Vista (32 bit):
Windows
Intel x86 + Gentoo Linux (64 bit):

<code>
Linux

Raspberry P12 + Raspbian Linux (32 bit):

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last update:

23/06/2022 info:cursos:netacad:python:pe2ml:modulos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1:modulos
02:21

Linux
platform system

system

La funcion version

La versién del sistema operativo se proporciona como una cadena por la funcién version().
Ejecuta el cédigo y verifica su salida. Esto es lo que tenemos:

Intel x86 + Windows ® Vista (32 bit):

6.0.6002

Intel x86 + Gentoo Linux (64 bit):

#1 SMP PREEMPT Fri Jul 21 22:44:37 CEST 2017
Raspberry P12 + Raspbian Linux (32 bit):

#1 SMP Debian 4.4.6-1+rpil4 (2016-05-05)

platform version
version
platform version

Las funciones python_implementation y python_version_tuple

Si necesitas saber que version de Python esta ejecutando tu cédigo, puedes verificarlo utilizando una serie de
funciones dedicadas, aqui hay dos de ellas:

¢ python_implementation() » devuelve una cadena que denota la implementacién de Python (espera
CPython aqui, a menos que decidas utilizar cualquier rama de Python no canénica).
¢ python_version_tuple() - devuelve una tupla de tres elementos la cual contiene:
o La parte mayor de la versién de Python.
o La parte menor.
o El nimero del nivel de parche.

platform python implementation, python version tuple
python implementation

atr python version tuple
atr

Nuestro programa de ejemplo produjo el siguiente resultado:

CPython
3

https://miguelangel.torresegea.es/wiki/ Printed on 16/12/2025 14:52



16/12/2025 14:52 19/20 Modulo 1 (intermedio): Médulos

7
7

Es muy probable que tu version de Python sea diferente.
indice de Médulos de Python

Aqui solo hemos cubierto los conceptos basicos de los mddulos de Python. Los médulos de Python conforman su
propio universo, en el que Python es solo una galaxia, y nos aventurariamos a decir que explorar las
profundidades de estos médulos puede llevar mucho mas tiempo que familiarizarse con Python «puro».

Ademads, la comunidad de Python en todo el mundo crea y mantiene cientos de mdédulos adicionales utilizados
en aplicaciones muy especificas como la genética, la psicologia o incluso la astrologia.

Estos mddulos no estan (y no seran) distribuidos junto con Python, o a través de canales oficiales, lo que hace
que el universo de Python sea mas amplio, casi infinito.

Puedes leer sobre todos los mddulos estandar de Python aqui: https://docs.python.org/3/py-modindex.html.
No te preocupes, no necesitaras todos estos mddulos. Muchos de ellos son muy especificos.

Todo lo que se necesita hacer es encontrar los mddulos que se desean y aprender a cdmo usarlos. Es facil.
Puntos Clave

1. Una funcién llamada dir() puede mostrarte una lista de las entidades contenidas dentro de un médulo
importado. Por ejemplo:

oS
dir(os

Imprime una lista de todo el contenido del mddulo os el cual, puedes usar en tu cédigo.

2. El médulo math contiene mas de 50 funciones y constantes que realizan operaciones matematicas (como
sine(), pow(), factorial()) o aportando valores importantes (como n y la constante de Euler e).

3. El médulo random agrupa mas de 60 entidades disefiadas para ayudarte a usar nimeros pseudoaleatorios.
No olvides el prefijo «pseudo», ya que no existe un nimero aleatorio real cuando se trata de generarlos
utilizando los algoritmos de la computadora.

4. El médulo platform contiene alrededor de 70 funciones que te permiten sumergirte en las capas subyacentes
del sistema operativo y el hardware. Usarlos te permite aprender mas sobre el entorno en el que se ejecuta tu
cédigo.

5. El indice de Mddulos de Python (https://docs.python.org/3/py-modindex.html es un directorio de médulos
impulsado por la comunidad disponible en el universo de Python. Si deseas encontrar un mddulo que se adapte
a tus necesidades, comienza tu busqueda alli.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/


https://docs.python.org/3/py-modindex.html
https://docs.python.org/3/py-modindex.html

Last update:
23/06/2022 info:cursos:netacad:python:pe2ml:modulos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1:modulos

02:21

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1l:modul

oS

Last update: 23/06/2022 02:21

https://miguelangel.torresegea.es/wiki/ Printed on 16/12/2025 14:52


https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1:modulos
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1:modulos

	Modulo 1 (intermedio): Módulos
	¿Cómo hacer uso de un módulo?
	Importando un módulo
	Importando un módulo: *
	Importando un módulo: la palabra clave reservada as

	Módulos útiles
	Trabajando con módulos estándar
	Funciones seleccionadas del módulo math
	¿Existe aleatoriedad real en las computadoras?
	Funciones seleccionadas del módulo random
	La función random

	La función seed
	Las funciones randrange y randint
	Las funciones choice y sample

	Platform
	Funciones seleccionadas del módulo platform
	La función platform
	La función machine
	La función processor
	La función system
	La función version
	Las funciones python_implementation y python_version_tuple

	Índice de Módulos de Python
	Puntos Clave



