
14/02/2026 10:28 1/4 Modulo 1 (intermedio): Módulos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Modulo 1 (intermedio): Módulos

El código de computadora tiene una tendencia a crecer. Podemos decir que el código que no crece
probablemente sea completamente inutilizable o esté abandonado. Un código real, deseado y ampliamente
utilizado se desarrolla continuamente, ya que tanto las demandas de los usuarios como sus expectativas se
desarrollan de manera diferente.

Un código que no puede responder a las necesidades de los usuarios se olvidará rápidamente y se reemplazará
instantáneamente con un código nuevo, mejor y más flexible. Se debe estar preparado para esto, y nunca
pienses que tus programas están terminados por completo. La finalización es un estado de transición y
generalmente pasa rápidamente, después del primer informe de error. Python en sí es un buen ejemplo de
cómo actúa esta regla.

El código creciente es, de hecho, un problema creciente. Un código más grande siempre significa un
mantenimiento más difícil. La búsqueda de errores siempre es más fácil cuando el código es más pequeño (al
igual que encontrar una rotura mecánica es más simple cuando la maquinaria es más simple y pequeña).

Además, cuando se espera que el código que se está creando sea realmente grande (puedes usar el número
total de líneas de código como una medida útil, pero no muy precisa, del tamaño del código) entonces, se
deseará, o más bien, habrá la necesidad de dividirlo en muchas partes, implementado en paralelo por unos
cuantos, una docena, varias docenas o incluso varios cientos de desarrolladores.

Por supuesto, esto no se puede hacer usando un archivo fuente grande, el cual esta siendo editado por todos
los programadores al mismo tiempo. Esto seguramente conducirá a un desastre.

Si se desea que dicho proyecto de software se complete con éxito, se deben tener los medios que permitan:

Dividir todas las tareas entre los desarrolladores.
Después, unir todas las partes creadas en un todo funcional.

Por ejemplo, un determinado proyecto se puede dividir en dos partes principales:

La interfaz de usuario (la parte que se comunica con el usuario mediante widgets y una pantalla gráfica).
La lógica (la parte que procesa los datos y produce resultados).

Cada una de estas partes se puede (muy probablemente) dividir en otras más pequeñas, y así sucesivamente.
Tal proceso a menudo se denomina descomposición.

Por ejemplo, si te pidieran organizar una boda, no harías todo tu mismo: encontrarías una serie de profesionales
y dividirías la tarea entre todos.

¿Cómo se divide una pieza de software en partes separadas pero cooperantes? Esta es la pregunta. Los
módulos son la respuesta.

¿Cómo hacer uso de un módulo?

Entonces, ¿qué es un módulo? El Tutorial de Python lo define como un archivo que contiene definiciones y
sentencias de Python, que se pueden importar más tarde y utilizar cuando sea necesario.

El manejo de los módulos consta de dos cuestiones diferentes:

El primero (probablemente el más común) ocurre cuando se desea utilizar un módulo ya existente,
escrito por otra persona o creado por el programador mismo en algún proyecto complejo: en este caso,
se considera al programador como el usuario del módulo.



Last
update:
23/06/2022
00:18

info:cursos:netacad:python:pe2m1:modulos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1:modulos?rev=1655968695

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 10:28

El segundo ocurre cuando se desea crear un nuevo módulo, ya sea para uso propio o para facilitar la vida
de otros programadores: aquí tu eres el proveedor del módulo.

Discutamos ambos por separado.

En primer lugar, un módulo se identifica por su nombre. Si se desea utilizar cualquier módulo, se necesita
saber su nombre. Se entrega una cantidad (bastante grande) de módulos junto con Python. Se puede pensar en
ellos como una especie de «equipamiento adicional de Python».

Todos estos módulos, junto con las funciones integradas, forman la Biblioteca Estándar de Python - un tipo
especial de biblioteca donde los módulos desempeñan el papel de libros (incluso podemos decir que las
carpetas desempeñan el papel de estanterías). Si deseas ver la lista completa de todos los «volúmenes»
recopilados en esa biblioteca, se puede encontrar aquí: https://docs.python.org/3/library/index.html.

Cada módulo consta de entidades (como un libro consta de capítulos). Estas entidades pueden ser funciones,
variables, constantes, clases y objetos. Si se sabe como acceder a un módulo en particular, se puede utilizar
cualquiera de las entidades que almacena.

Comencemos la discusión con uno de los módulos más utilizados, el que lleva por nombre math. Su nombre
habla por sí mismo: el módulo contiene una rica colección de entidades (no solo funciones) que permiten a un
programador implementar efectivamente cálculos que exigen el uso de funciones matemáticas, como sen() o
log().

Importando un módulo

Para que un módulo sea utilizable, hay que importarlo (piensa en ello como sacar un libro del estante). La
importación de un módulo se realiza mediante una instrucción llamada import. Nota: import es también una
palabra clave reservada (con todas sus implicaciones).

Supongamos que deseas utilizar dos entidades proporcionadas por el módulo math:

Un símbolo (constante) que representa un valor preciso (tan preciso como sea posible usando aritmética
de punto flotante doble) de π (aunque usar una letra griega para nombrar una variable es totalmente
posible en Python, el símbolo se llama pi: es una solución más conveniente, especialmente para esa
parte del mundo que ni tiene ni va a usar un Teclado Griego).
Una función llamada sin() (el equivalente informático de la función matemática seno).

Ambas entidades están disponibles a través del módulo math, pero la forma en que se pueden usar depende en
gran medida de como se haya realizado la importación.

https://docs.python.org/3/library/index.html


14/02/2026 10:28 3/4 Modulo 1 (intermedio): Módulos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

La forma más sencilla de importar un módulo en particular es usar la instrucción para importar de la siguiente
manera:

import math

La cláusula contiene:

La palabra reservada import.
El nombre del módulo que se va a importar.

La instrucción puede colocarse en cualquier parte del código, pero debe colocarse antes del primer uso de
cualquiera de las entidades del módulo.

Si se desea (o se tiene que) importar más de un módulo, se puede hacer repitiendo la cláusula import, o
listando los módulos despues de la palabra reservada import, por ejemplo:

import math
import sys

o enumerando los módulos después de la palabra clave reservada import, como aquí:

import math, sys

La instrucción importa dos módulos, primero uno llamado math y luego un segundo llamado sys.

La lista de módulos puede ser arbitrariamente larga.

Para continuar, debes familiarizarte con un término importante: namespace. No te preocupes, no entraremos
en detalles: esta explicación será lo más breve posible.

Un namespace es un espacio (entendido en un contexto no físico) en el que existen algunos nombres y los
nombres no entran en conflicto entre sí (es decir, no hay dos objetos diferentes con el mismo nombre).
Podemos decir que cada grupo social es un namespace - el grupo tiende a nombrar a cada uno de sus
miembros de una manera única (por ejemplo, los padres no darían a sus hijos el mismo nombre).

Esta singularidad se puede lograr de muchas maneras, por ejemplo, mediante el uso de apodos junto con los
nombres (funcionará dentro de un grupo pequeño como una clase en una escuela) o asignando identificadores
especiales a todos los miembros del grupo (el número de Seguro Social de EE. UU. es un buen ejemplo de tal
práctica).

Dentro de un determinado namespace, cada nombre debe permanecer único. Esto puede significar que
algunos nombres pueden desaparecer cuando cualquier otra entidad de un nombre ya conocido ingresa al
namespace. Mostraremos como funciona y como controlarlo, pero primero, volvamos a las importaciones.



Last
update:
23/06/2022
00:18

info:cursos:netacad:python:pe2m1:modulos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1:modulos?rev=1655968695

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 10:28

Si el módulo de un nombre especificado existe y es accesible (un módulo es de hecho un archivo fuente de
Python), Python importa su contenido, se hacen conocidos todos los nombres definidos en el módulo,
pero no ingresan al namespace del código.

Esto significa que puedes tener tus propias entidades llamadas sin o pi y no serán afectadas en alguna manera
por la importación.

En este punto, es posible que te estes preguntando como acceder al pi el cual viene del módulo math.

Para hacer esto, se debe de mandar llamar el pi con el nombre del módulo original.

Observa el fragmento a continuación, esta es la forma en que se habilitan los nombres de pi y sin con el nombre
de su módulo de origen:

math.pi
math.sin

Es sencillo, se pone:

El nombre del módulo (math).
Un punto.
El nombre de la entidad (pi).

Tal forma indica claramente el namespace en el que existe el nombre.

Nota: el uso de esto es obligatorio si un módulo ha sido importado con la instrucción import. No importa si
alguno de los nombres del código y del namespace del módulo están en conflicto o no.

Este primer ejemplo no será muy avanzado: solo se desea imprimir el valor de sin(½π).

import math
print(math.sin(math.pi/2))

El código genera el valor esperado: 1.0.

Nota: el eliminar cualquiera de las dos indicaciones del nombre del módulo hará que el código sea erróneo. No
hay otra forma de entrar al namespace de math si se hizo lo siguiente:

import math

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1:modulos?rev=1655968695

Last update: 23/06/2022 00:18

https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1:modulos?rev=1655968695

	Modulo 1 (intermedio): Módulos
	¿Cómo hacer uso de un módulo?
	Importando un módulo


