14/02/2026 10:28 1/4 Modulo 1 (intermedio): Médulos

Modulo 1 (intermedio): Mddulos

El cédigo de computadora tiene una tendencia a crecer. Podemos decir que el cédigo que no crece
probablemente sea completamente inutilizable o esté abandonado. Un cddigo real, deseado y ampliamente
utilizado se desarrolla continuamente, ya que tanto las demandas de los usuarios como sus expectativas se
desarrollan de manera diferente.

Un cédigo que no puede responder a las necesidades de los usuarios se olvidara rapidamente y se reemplazara
instantdneamente con un cddigo nuevo, mejor y mas flexible. Se debe estar preparado para esto, y nunca
pienses que tus programas estan terminados por completo. La finalizacién es un estado de transicién y
generalmente pasa rapidamente, después del primer informe de error. Python en si es un buen ejemplo de
cémo actla esta regla.

El codigo creciente es, de hecho, un problema creciente. Un cddigo mas grande siempre significa un
mantenimiento mas dificil. La bdsqueda de errores siempre es mas facil cuando el cédigo es mds pequefio (al
igual que encontrar una rotura mecanica es mas simple cuando la maquinaria es méas simple y pequefia).

Ademads, cuando se espera que el cddigo que se estd creando sea realmente grande (puedes usar el nimero
total de lineas de cddigo como una medida Util, pero no muy precisa, del tamafo del cédigo) entonces, se
deseard, 0 mas bien, habra la necesidad de dividirlo en muchas partes, implementado en paralelo por unos
cuantos, una docena, varias docenas o incluso varios cientos de desarrolladores.

Por supuesto, esto no se puede hacer usando un archivo fuente grande, el cual esta siendo editado por todos
los programadores al mismo tiempo. Esto seguramente conducird a un desastre.

Si se desea que dicho proyecto de software se complete con éxito, se deben tener los medios que permitan:

¢ Dividir todas las tareas entre los desarrolladores.
¢ Después, unir todas las partes creadas en un todo funcional.

Por ejemplo, un determinado proyecto se puede dividir en dos partes principales:

¢ La interfaz de usuario (la parte que se comunica con el usuario mediante widgets y una pantalla grafica).
e La ldgica (la parte que procesa los datos y produce resultados).

Cada una de estas partes se puede (muy probablemente) dividir en otras mas pequefas, y asi sucesivamente.
Tal proceso a menudo se denomina descomposicidn.

Por ejemplo, si te pidieran organizar una boda, no harfas todo tu mismo: encontrarias una serie de profesionales
y dividirias la tarea entre todos.

¢Cémo se divide una pieza de software en partes separadas pero cooperantes? Esta es la pregunta. Los
maodulos son la respuesta.

¢Como hacer uso de un modulo?

Entonces, ;qué es un médulo? El Tutorial de Python lo define como un archivo que contiene definiciones y
sentencias de Python, que se pueden importar mds tarde y utilizar cuando sea necesario.

El manejo de los médulos consta de dos cuestiones diferentes:

o El primero (probablemente el mas comdn) ocurre cuando se desea utilizar un médulo ya existente,
escrito por otra persona o creado por el programador mismo en algin proyecto complejo: en este caso,
se considera al programador como el usuario del médulo.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last
update:
23/06/2022
00:18

info:cursos:netacad:python:pe2m1:modulos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1l:modulos?rev=1655968695

¢ El segundo ocurre cuando se desea crear un nuevo médulo, ya sea para uso propio o para facilitar la vida
de otros programadores: aqui tu eres el proveedor del médulo.

Discutamos ambos por separado.

En primer lugar, un médulo se identifica por su nombre. Si se desea utilizar cualquier médulo, se necesita
saber su nombre. Se entrega una cantidad (bastante grande) de médulos junto con Python. Se puede pensar en
ellos como una especie de «equipamiento adicional de Python».

Todos estos mddulos, junto con las funciones integradas, forman la Biblioteca Estandar de Python - un tipo
especial de biblioteca donde los médulos desempefian el papel de libros (incluso podemos decir que las
carpetas desempefian el papel de estanterias). Si deseas ver la lista completa de todos los «volimenes»
recopilados en esa biblioteca, se puede encontrar aqui: https://docs.python.org/3/library/index.html.

Cada mddulo consta de entidades (como un libro consta de capitulos). Estas entidades pueden ser funciones,
variables, constantes, clases y objetos. Si se sabe como acceder a un médulo en particular, se puede utilizar
cualquiera de las entidades que almacena.

funciones matematicas

nombre
del modulo

Comencemos la discusién con uno de los médulos mas utilizados, el que lleva por nombre math. Su nombre
habla por si mismo: el médulo contiene una rica coleccién de entidades (no solo funciones) que permiten a un
programador implementar efectivamente célculos que exigen el uso de funciones matematicas, como sen() o
log().

Importando un médulo

Para que un mdédulo sea utilizable, hay que importarlo (piensa en ello como sacar un libro del estante). La
importaciéon de un médulo se realiza mediante una instruccién llamada import. Nota: import es también una
palabra clave reservada (con todas sus implicaciones).

Supongamos que deseas utilizar dos entidades proporcionadas por el médulo math:

¢ Un simbolo (constante) que representa un valor preciso (tan preciso como sea posible usando aritmética
de punto flotante doble) de n (aunque usar una letra griega para nombrar una variable es totalmente
posible en Python, el simbolo se llama pi: es una solucién mas conveniente, especialmente para esa
parte del mundo que ni tiene ni va a usar un Teclado Griego).

¢ Una funcidn llamada sin() (el equivalente informatico de la funcién matematica seno).

Ambas entidades estan disponibles a través del médulo math, pero la forma en que se pueden usar depende en
gran medida de como se haya realizado la importacién.

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 10:28


https://docs.python.org/3/library/index.html

14/02/2026 10:28 3/4 Modulo 1 (intermedio): Médulos

La forma mas sencilla de importar un médulo en particular es usar la instruccién para importar de la siguiente
manera:

math

La clausula contiene:

¢ La palabra reservada import.
¢ El nombre del médulo que se va a importar.

La instruccién puede colocarse en cualquier parte del cédigo, pero debe colocarse antes del primer uso de
cualquiera de las entidades del médulo.

Si se desea (o se tiene que) importar mas de un mddulo, se puede hacer repitiendo la cldusula import, o
listando los médulos despues de la palabra reservada import, por ejemplo:

math
sys

0 enumerando los médulos después de la palabra clave reservada import, como aqui:
math, sys

La instruccién importa dos médulos, primero uno llamado math y luego un segundo llamado sys.
La lista de médulos puede ser arbitrariamente larga.

Para continuar, debes familiarizarte con un término importante: namespace. No te preocupes, no entraremos
en detalles: esta explicacién serd lo mas breve posible.

Un namespace es un espacio (entendido en un contexto no fisico) en el que existen algunos nombres y los
nombres no entran en conflicto entre si (es decir, no hay dos objetos diferentes con el mismo nombre).
Podemos decir que cada grupo social es un namespace - el grupo tiende a nombrar a cada uno de sus
miembros de una manera Unica (por ejemplo, los padres no darian a sus hijos el mismo nombre).

Carl Adam Natalie Marie

Judy Pierre Frank

James Bruce

A Janet
nna Michael Sarah

Esta singularidad se puede lograr de muchas maneras, por ejemplo, mediante el uso de apodos junto con los
nombres (funcionard dentro de un grupo pequefio como una clase en una escuela) o asignando identificadores
especiales a todos los miembros del grupo (el nimero de Seguro Social de EE. UU. es un buen ejemplo de tal
practica).

Dentro de un determinado namespace, cada nombre debe permanecer unico. Esto puede significar que
algunos nombres pueden desaparecer cuando cualquier otra entidad de un nombre ya conocido ingresa al
namespace. Mostraremos como funciona y como controlarlo, pero primero, volvamos a las importaciones.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last
update:
23/06/2022
00:18

info:cursos:netacad:python:pe2m1:modulos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1l:modulos?rev=1655968695

Si el mddulo de un nombre especificado existe y es accesible (un mddulo es de hecho un archivo fuente de
Python), Python importa su contenido, se hacen conocidos todos los nombres definidos en el médulo,
pero no ingresan al namespace del cédigo.

Esto significa que puedes tener tus propias entidades llamadas sin o pi y no seran afectadas en alguna manera
por la importacion.

En este punto, es posible que te estes preguntando como acceder al pi el cual viene del médulo math.
Para hacer esto, se debe de mandar llamar el pi con el nombre del médulo original.

Observa el fragmento a continuacion, esta es la forma en que se habilitan los nombres de pi y sin con el nombre
de su mdédulo de origen:

math.pi
math.sin

Es sencillo, se pone:

¢ El nombre del médulo (math).
¢ Un punto.
¢ El nombre de la entidad (pi).

Tal forma indica claramente el namespace en el que existe el nombre.

Nota: el uso de esto es obligatorio si un médulo ha sido importado con la instruccién import. No importa si
alguno de los nombres del cédigo y del namespace del médulo estan en conflicto o no.

Este primer ejemplo no serd muy avanzado: solo se desea imprimir el valor de sin(%2m).

math
math.sin(math.pi/

El codigo genera el valor esperado: 1.0.

Nota: el eliminar cualquiera de las dos indicaciones del nombre del médulo hara que el cédigo sea erréneo. No
hay otra forma de entrar al namespace de math si se hizo lo siguiente:

math

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2ml:modulos?rev=1655968695

Last update: 23/06/2022 00:18

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 10:28


https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1:modulos?rev=1655968695

	Modulo 1 (intermedio): Módulos
	¿Cómo hacer uso de un módulo?
	Importando un módulo


