06/01/2026 13:28 1/17 Modulo 1 (intermedio): Paquetes

Modulo 1 (intermedio): Paquetes

Escribir tus propios mddulos no difiere mucho de escribir scripts comunes.

Existen algunos aspectos especificos que se deben tomar en cuenta, pero definitivamente no es algo
complicado. Lo verds pronto.

Resumamos algunos aspectos importantes:

e Un médulo es un contenedor lleno de funciones - puedes empaquetar tantas funciones como desees
en un modulo y distribuirlo por todo el mundo.

¢ Por supuesto, no es una buena idea mezclar funciones con diferentes areas de aplicacién dentro de un
médulo (al igual que en una biblioteca: nadie espera que los trabajos cientificos se incluyan entre los
coémics), asi que se deben agrupar las funciones cuidadosamente y asignar un nombre claro e intuitivo al
maddulo que las contiene (por ejemplo, no le des el nombre videojuegos a un mddulo que contiene
funciones destinadas a particionar y formatear discos duros).

e Crear muchos mddulos puede causar desorden: tarde que temprano querrds agrupar tus médulos de
la misma manera que previamente has agrupado funciones: ;Existe un contenedor mas general que un
madulo?

¢ Silo hay, es un paquete: en el mundo de los mddulos, un paquete juega un papel similar al de una
carpeta o directorio en el mundo de los archivos.

Tu primer médulo: paso 1

En esta seccién, trabajaras localmente en tu maguina. Comencemos desde cero. Crea un archivo vacio, de la
siguiente manera:

module.py

Se necesitan dos archivos para realizar estos experimentos. Uno de ellos serd el médulo en si. Esta vacio ahora.
No te preocupes, lo vas a llenar con cédigo pronto.

El archivo lleva por nombre module.py. No muy creativo, pero es simple y claro.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

https://miguelangel.torresegea.es/wiki/_export/code/info:cursos:netacad:python:pe2m1:paquetes?codeblock=0

Last
update:
23/06/2022
04:18

info:cursos:netacad:python:pe2m1l:paquetes https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1l:paquetes

Tu primer médulo: paso 2

El segundo archivo contiene el cédigo que utiliza el nuevo médulo. Su nombre es main.py. Su contenido es muy
breve hasta ahora:

Creando el archivo main.py el cual contiene la instruccién import module

main.py

module

Nota: ambos archivos deben estar ubicados en la misma carpeta. Te recomendamos crear una carpeta nueva y
vacia para ambos archivos. Esto hara que las cosas sean mas faciles.

Inicia el IDLE (o cualquier otro que prefieras) y ejecuta el archivo main.py. ;Qué es lo que ves?
No deberfas ver nada. Esto significa que Python ha importado con éxito el contenido del archivo module.py.

No importa que el mddulo esté vacio por ahora. El primer paso ya estd hecho, pero antes de dar el siguiente
paso, queremos que eches un vistazo a la carpeta en la que se encuentran ambos archivos.

iNotas algo interesante?

Ha aparecido una nueva subcarpeta, ;puedes verla? Su nombre es __pycache__. Echa un vistazo adentro. ;Qué
es lo que ves?

Hay un archivo llamado (mdas o menos) module.cpython-xy.pyc donde x y y son digitos derivados de tu version
de Python (por ejemplo, seran 3y 8 si utilizas Python 3.8).

El nombre del archivo es el mismo que el de tu médulo. La parte posterior al primer punto dice qué
implementacién de Python ha creado el archivo (CPython) y su nimero de versién. La ultima parte (pyc) viene
de las palabras Python y compilado.

Puedes mirar dentro del archivo: el contenido es completamente ilegible para los humanos. Tiene que ser asi,
ya que el archivo estd destinado solo para uso el uso de Python.

Cuando Python importa un médulo por primera vez, traduce el contenido a una forma algo compilada.

El archivo no contiene cddigo en lenguaje maquina: es cédigo semi-compilado interno de Python, listo para ser
ejecutado por el intérprete de Python. Como tal archivo no requiere tantas comprobaciones como las de un
archivo fuente, la ejecucién comienza mas rapido y también se ejecuta mas rapido.

Gracias a eso, cada importacién posterior serd mas rapida que interpretar el cédigo fuente desde cero.

Python puede verificar si el archivo fuente del mddulo ha sido modificado (en este caso, el archivo pyc sera
reconstruido) o no (cuando el archivo pyc pueda ser ejecutado al instante). Este proceso es completamente
automatico y transparente, no tiene que ser tomando en cuenta.

Tu primer médulo: paso 3

Ahora hemos puesto algo en el archivo del mddulo:

https://miguelangel.torresegea.es/wiki/ Printed on 06/01/2026 13:28

https://miguelangel.torresegea.es/wiki/_export/code/info:cursos:netacad:python:pe2m1:paquetes?codeblock=1

06/01/2026 13:28 3/17 Modulo 1 (intermedio): Paquetes

module.py

"Me gusta ser un médulo."

(Puedes notar alguna diferencia entre un médulo y un script ordinario? No hay ninguna hasta ahora.
Es posible ejecutar este archivo como cualquier otro script. Pruébalo por ti mismo.

¢Qué es lo que pasa? Deberias de ver la siguiente linea dentro de tu consola:

Me gusta ser un médulo.

Tu primer médulo: paso 4

El archivo main.py file con la instruccién import module

main.py

module

Ejecuta el archivo. ;Qué ves? Con suerte, veras algo como esto:
Me gusta ser un médulo.

:Qué significa realmente?

Cuando un mddulo es importado, su contenido es ejecutado implicitamente por Python. Le da al médulo la
oportunidad de inicializar algunos de sus aspectos internos (por ejemplo, puede asignar a algunas variables
valores Utiles).

Nota: la inicializacién se realiza sélo una vez, cuando se produce la primera importacién, por lo que las
asignaciones realizadas por el médulo no se repiten innecesariamente.

Imagina el siguiente contexto:

e Existe un médulo llamado mod1.
e Existe un médulo llamado mod2 el cual contiene la instruccién import mod1.
¢ Hay un archivo principal que contiene las instrucciones import modl e import mod2.

A primera vista, se puede pensar que mod1l sera importado dos veces - afortunadamente, solo se produce la
primera importacién. Python recuerda los médulos importados y omite silenciosamente todas las importaciones
posteriores.

Tu primer médulo: paso 5

Python puede hacer mucho mas que solo importar el médulo. También crea una variable llamada __name__.
Ademads, cada archivo fuente usa su propia version separada de la variable, no se comparte entre médulos.

Te mostraremos como usarlo. Modifica el médulo un poco:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

https://miguelangel.torresegea.es/wiki/_export/code/info:cursos:netacad:python:pe2m1:paquetes?codeblock=2
https://miguelangel.torresegea.es/wiki/_export/code/info:cursos:netacad:python:pe2m1:paquetes?codeblock=4

Last
update:
23/06/2022
04:18

info:cursos:netacad:python:pe2m1l:paquetes https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1l:paquetes

module.py

"Me gusta ser un médulo."
__name___

Ahora ejecuta el archivo module.py. Deberias ver las siguientes lineas:

Me gusta ser un mddulo.
__main_

Ahora ejecuta el archivo main.py. ¢Y? ;Ves lo mismo que nosotros?

Me gusta ser un médulo.
module

Podemos decir que:

e Cuando se ejecuta un archivo directamente, su variable _name__se establece a __main__.
¢ Cuando un archivo se importa como un médulo, su variable _name__ se establece al nombre del archivo
(excluyendo a .py).

Tu primer mdédulo: paso 6

As{ es como puedes hacer uso de la variable _main__ para detectar el contexto en el cual se activé tu cddigo:

module.py

__nhame__ __main_
"Yo prefiero ser un médulo"

"Me gusta ser un médulo"

Sin embargo, existe una forma mas inteligente de utilizar la variable. Si escribes un médulo lleno de varias
funciones complejas, puedes usarla para colocar una serie de pruebas para verificar si las funciones trabajan
correctamente.

Cada vez que modifiques alguna de estas funciones, simplemente puedes ejecutar el médulo para asegurarte
de que sus enmiendas no estropeen el cddigo. Estas pruebas se omitirdn cuando el cédigo se importe como un
mddulo.

Tu primer médulo: paso 7

Este médulo contendra dos funciones simples, y si deseas saber cuantas veces se han invocado las funciones,
necesitas un contador inicializado en cero cuando se importe el médulo.

Puedes hacerlo de esta manera:

module.py

https://miguelangel.torresegea.es/wiki/ Printed on 06/01/2026 13:28

https://miguelangel.torresegea.es/wiki/_export/code/info:cursos:netacad:python:pe2m1:paquetes?codeblock=6
https://miguelangel.torresegea.es/wiki/_export/code/info:cursos:netacad:python:pe2m1:paquetes?codeblock=9
https://miguelangel.torresegea.es/wiki/_export/code/info:cursos:netacad:python:pe2m1:paquetes?codeblock=10

06/01/2026 13:28 5/17 Modulo 1 (intermedio): Paquetes

counter

__hame__ __main_
"Yo prefiero ser un médulo"

"Me gusta ser un médulo"

Tu primer médulo: paso 8
El introducir tal variable es absolutamente correcto, pero puede causar importantes efectos secundarios que
debes tomar en cuenta.

Analiza el archivo modificado main.py:

main.py

module
module.counter

Como puedes ver, el archivo principal intenta acceder a la variable de contador del médulo. ¢Es esto legal? Si lo
es. ;Es utilizable? Claro. Es seguro?

Eso depende: si confias en los usuarios de tu mdédulo, no hay problema; sin embargo, es posible que no desees
gue el resto del mundo vea tu variable personal o privada.

A diferencia de muchos otros lenguajes de programacién, Python no tiene medios para permitirte ocultar tales
variables a los ojos de los usuarios del médulo.

Solo puedes informar a tus usuarios que esta es tu variable, que pueden leerla, pero que no deben modificarla
bajo ninguna circunstancia.

Esto se hace anteponiendo al nombre de la variable _ (un guién bajo) o _ (dos guiones bajos), pero recuerda, es
solo un acuerdo. Los usuarios de tu médulo pueden obedecerlo o no.

Nosotros por supuesto, lo respetaremos. Ahora pongamos dos funciones en el médulo: evaluardn la suma vy el
producto de los nimeros recopilados en una lista.

Ademads, agreguemos algunos adornos alli y eliminemos los restos superfluos.

Tu primer médulo: paso 9
Bueno. Escribamos un cddigo nuevo en nuestro archivo module.py. El médulo actualizado est? listo aqui:

#!/usr/bin/env python3
""" module.py - Un ejemplo de un médulo en Python """

__counter = 0

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

https://miguelangel.torresegea.es/wiki/_export/code/info:cursos:netacad:python:pe2m1:paquetes?codeblock=11

Last

52?5572:022 info:cursos:netacad:python:pe2m1l:paquetes https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1l:paquetes

04:18

def suml(the list):
global counter
__counter +=1
the sum = 0
for element in the list:
the sum += element
return the sum

def prodl(the list):
global _ counter
__counter +=1
prod = 1
for element in the list:
prod *= element
return prod

if name == " main_":
print("Yo prefiero ser un médulo, pero puedo realizar algunas pruebas por ti")
my list = [i+1 for i in range(5)]
print(suml(my list) == 15)
print(prodl(my list) == 120)

Algunos elementos necesitan explicacién:

¢ La linea que comienza con #! tiene muchos nombres - puede ser llamada shabang, shebang, hashbang,
poundbang o incluso hashpling (no nos preguntes por qué). El nombre en si no significa nada aqui, su
papel es mas importante. Desde el punto de vista de Python, es solo un comentario debido a que
comienza con #. Para sistemas operativos Unix y similares a Unix (incluido MacOS), dicha linea indica al
sistema operativo como ejecutar el contenido del archivo (en otras palabras, que programa debe
ejecutarse para interpretar el texto). En algunos entornos (especialmente aquellos conectados con
servidores web) la ausencia de esa linea causara problemas.

¢ Una cadena (quizas una multilinea) colocada antes de las instrucciones de cualquier médulo (incluidas las
importaciones) se denomina doc-string, y debe explicar brevemente el propésito y el contenido del
mddulo.

¢ Las funciones definidas dentro del médulo (suml() y prodl()) estan disponibles para ser importadas.

¢ Se ha utilizado la variable _name__ para detectar cuando se ejecuta el archivo de forma independiente,
y se aprovechd esta oportunidad para realizar algunas pruebas sencillas.

Tu primer mdédulo: paso 10

Ahora es posible usar el nuevo médulo, esta es una forma de hacerlo:

main.py
module suml, prodl
zeroes i range
ones i range

suml(zeroes

https://miguelangel.torresegea.es/wiki/ Printed on 06/01/2026 13:28

https://miguelangel.torresegea.es/wiki/_export/code/info:cursos:netacad:python:pe2m1:paquetes?codeblock=12

06/01/2026 13:28 7/17 Modulo 1 (intermedio): Paquetes

prodl(ones

Tu primer médulo: paso 11

Es hora de hacer este ejemplo mas complejo: hemos asumido aqui que el archivo Python principal se encuentra
en la misma carpeta o directorio que el médulo que se va a importar.

Renunciemos a esta suposicion y realicemos el siguiente experimento mental:

e Estamos utilizando el sistema operativo Windows ® (esta suposicién es importante, ya que la forma del
nombre del archivo depende de ello).

¢ El script principal de Python se encuentra en C:\Users\user\py\progs y se llama main.py.

e El mddulo a importar se encuentra en C:\Users\user\py\modules

C:\

|— User

l_ user
I— | PY

modules

A

module.py
progs
main.py 'i
;Como lidiar con ello?

Para responder a esta pregunta, tenemos que hablar sobre como Python busca los médulos. Hay una
variable especial (en realidad una lista) que almacena todas las ubicaciones (carpetas o directorios) que se
buscan para encontrar un médulo que ha sido solicitado por la instruccién import.

Python examina estas carpetas en el orden en que aparecen en la lista: si el médulo no se puede encontrar en
ninguno de estos directorios, la importacion falla.

De lo contrario, se tomara en cuenta la primera carpeta que contenga un médulo con el nombre deseado (si
alguna de las carpetas restantes contiene un médulo con ese nombre, se ignorara).

La variable se llama path (ruta), y es accesible a través del médulo llamado sys. Asi es como puedes verificar
su valor:

Sys

p sys.path:
p

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
23/06/2022
04:18

info:cursos:netacad:python:pe2m1l:paquetes https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1l:paquetes

Hemos ejecutado el cddigo dentro del directorio C:\User\user y esto es lo que obtenemos:

:\Users\user
:\Users\user\AppData\Local\Programs\Python\Python36-32\python36.zip
:\Users\user\AppData\Local\Programs\Python\Python36-32\DLLs
:\Users\user\AppData\Local\Programs\Python\Python36-32\1ib
:\Users\user\AppData\Local\Programs\Python\Python36-32
:\Users\user\AppData\Local\Programs\Python\Python36-32\1ib\site-packages

OO0 000

Nota: la carpeta en la que comienza la ejecucién aparece en el primer elemento de la ruta.

Ten en cuenta también que: hay un archivo zip listado como uno de los elementos de la ruta, esto no es un
error. Python puede tratar los archivos zip como carpetas ordinarias, esto puede ahorrar mucho
almacenamiento.

{Puedes predecir cdmo resolver este problema? Puedes resolverlo agregando una carpeta que contenga el
modulo a la variable de ruta (la variable path), es completamente modificable.

Tu primer médulo: paso 12

Una de las varias soluciones posibles se ve asi:

main.py
Sys path
path.append('..\\modules'
module

zeroes i range

ones i range
module.suml(zeroes
module.prodl(ones

Nota:

¢ Se ha duplicado la \ dentro del nombre de la carpeta, ;sabes por qué?
o Debido a que una diagonal invertida se usa para escapar de otros caracteres, si deseas obtener
solo una diagonal invertida, debes escapar.
e Hemos utilizado el nombre relativo de la carpeta: esto funcionara si inicia el archivo main.py
directamente desde la carpeta de inicio, y no funcionara si el directorio actual no se ajusta a la ruta
relativa; siempre puedes usar una ruta absoluta, como esta:

path.append('C:\\Users\\user\\py\\modules'

e Hemos usado el método append(), la nueva ruta ocupara el Gltimo elemento en la lista de rutas; si no te
gusta la idea, puedes usar en lugar de ello el método insert().

https://miguelangel.torresegea.es/wiki/ Printed on 06/01/2026 13:28

https://miguelangel.torresegea.es/wiki/_export/code/info:cursos:netacad:python:pe2m1:paquetes?codeblock=15

06/01/2026 13:28 9/17 Modulo 1 (intermedio): Paquetes

Tu primer paquete: paso 1

Imagina que en un futuro no muy lejano, tu y tus socios escriben una gran cantidad de funciones en Python.

Tu equipo decide agrupar las funciones en médulos separados, y este es el resultado final:

alpha.py

#! Jusr/bin/env python3
mnn module: alpha non

funA
"Alpha“

__name_ __main_ ":
"Yo prefiero ser un médulo"

Nota: hemos presentado todo el contenido solo para el mddulo alpha.py, supongamos que todos los médulos
tienen un aspecto similar (contienen una funcién denominada funX, donde X es la primera letra del nombre del
maodulo).

Tu primer paquete: paso 2

De repente, alguien se da cuenta de que estos médulos forman su propia jerarquia, por lo que colocarlos a
todos en una estructura plana no sera una buena idea.

Después de algo de discusidn, el equipo llega a la conclusién de que los mddulos deben agruparse. Todos los
participantes estan de acuerdo en que la siguiente estructura de arbol refleja perfectamente las relaciones
mutuas entre los médulos:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

https://miguelangel.torresegea.es/wiki/_export/code/info:cursos:netacad:python:pe2m1:paquetes?codeblock=17

Last

;g?@éfz:ozz info:cursos:netacad:python:pe2m1l:paquetes https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1l:paquetes

04:18

group: extra

module: iota.py

def funI():
group: good

module: alpha.py

def funh() :

module: beta.py

def funB():
group: best

module: sigma.py

def funS():

module: tau.py

def funT|():

group: ugly

module: psi.py

def funP():

module: omega.py

def funO():

Repasemos esto de abajo hacia arriba:

El grupo ugly contiene dos mddulos: psi y omega.

El grupo best contiene dos mddulos: sigma y tau.

El grupo good contiene dos médulos: (alpha y beta) y un subgrupo (best).
El grupo extra contiene dos subgrupos: (good y bad) y un médulo (iota).

¢Se ve mal? De ninguna manera: analiza la estructura cuidadosamente. Se parece a algo, ;no?

Parece la estructura de un directorio.

https://miguelangel.torresegea.es/wiki/ Printed on 06/01/2026 13:28

06/01/2026 13:28 11/17 Modulo 1 (intermedio): Paquetes

Construyamos un arbol que refleje las dependencias proyectadas entre los médulos.

Asi es como se ve el arbol actualmente:

t
) TR @ iota.py
1 good
R
alpha.py
ﬁ beta.py
best
$® sigma.py
ugly @ tau.py
&/

#¥ | omega.py
¢ psi.py

Tal estructura es casi un paquete (en el sentido de Python). Carece del detalle fino para ser funcional y
operativo. Lo completaremos en un momento.

Si asumes que extra es el nombre de un paquete recientemente creado (piensa en el como la raiz del
paquete), impondra una regla de nomenclatura que te permitird nombrar claramente cada entidad del arbol.

Por ejemplo:

La ubicacién de una funcién llamada funT() del paquete tau puede describirse como:
extra.good.best.tau.funT()

Una funcién marcada como:

extra.ugly.psi.funP()

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
23/06/2022
04:18

info:cursos:netacad:python:pe2m1l:paquetes https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1l:paquetes

Proviene del médulo psi el cual esta almacenado en el subpaquete ugly del paquete extra.

Tu primer paquete: paso 4

Ahora se deben responder dos preguntas:

e ;Cémo se transforma este arbol (en realidad, un subarbol) en un paquete real de Python (en otras
palabras, ;cémo convence a Python de que dicho &rbol no es solo un montén de archivos basura, sino un
conjunto de médulos)?

e ;Dénde se coloca el subarbol para que Python pueda acceder a éI?

La primer pregunta tiene una respuesta sorprendente: los paquetes, como los médulos, pueden requerir
inicializacion.

La inicializacién de un médulo se realiza mediante un cédigo independiente (que no forma parte de ninguna
funcién) ubicado dentro del archivo del médulo. Como un paquete no es un archivo, esta técnica es inutil para
inicializar paquetes.

En su lugar, debes usar un truco diferente: Python espera que haya un archivo con un nombre muy exclusivo
dentro de la carpeta del paquete: _init_.py.

El contenido del archivo se ejecuta cuando se importa cualquiera de los mddulos del paquete. Si no deseas
ninguna inicializacién especial, puedes dejar el archivo vacio, pero no debes omitirlo.

Tu primer paquete: paso 5

Recuerda: la presencia del archivo __init__.py finalmente compone el paquete:

https://miguelangel.torresegea.es/wiki/ Printed on 06/01/2026 13:28

06/01/2026 13:28 13/17 Modulo 1 (intermedio): Paquetes

iota.py

oy

extra
.

@ init .py

good

d. alpha.py

beta.py

best

¥ sigma.py

1 —— # tau.py

A

omega.py
¢ psi.py

Nota: no solo la carpeta raiz puede contener el archivo __init__.py, también puedes ponerlo dentro de cualquiera
de sus subcarpetas (subpaquetes). Puede ser Util si algunos de los subpaquetes requieren tratamiento
individual o un tipo especial de inicializacién.

Ahora es el momento de responder la segunda pregunta, ;Dénde se coloca el subarbol para que sea accesible
para Python? La respuesta es simple: donde quiera. Solo tienes que asegurarte de que Python conozca la
ubicacién del paquete. Ya sabes como hacer eso.

Estds listo para usar tu primer paquete.

Tu primer paquete: paso 6

Supongamos que el entorno de trabajo se ve de la siguiente manera:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
23/06/2022
04:18

info:cursos:netacad:python:pe2m1l:paquetes https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1l:paquetes

C:\

L Users

L

|user

L | modules

||| packages

module.py

; extra

iota.py

= || good
alpha.py
beta.py

init .py

¥ sigma.py
tau.py
=1 ugly
omega.py
- progs # psi.py
® main.py
mainl.py

Hemos preparado un archivo zip que contiene todos los archivos de la rama de paquetes. Puedes descargarlo y
usarlo para tus propios experimentos, pero recuerda desempaquetarlo en la carpeta presentada en el esquema,
de lo contrario, no serd accesible para el cédigo.

archivo_zip_modulos_y paquetes.zip

Continuaras tus experimentos empleado el archivo main2.py.

Tu primer paquete: paso 7

Vamos a acceder a la funcién funl() del médulo iota del pagquete extra. Nos obliga a usar nombres de paquetes
calificados (asocia esto al nombramiento de carpetas y subcarpetas).

Asi es como se hace:

https://miguelangel.torresegea.es/wiki/

Printed on 06/01/2026 13:28

06/01/2026 13:28 15/17 Modulo 1 (intermedio): Paquetes

main2.py

Sys path
path.append('..\\packages'

extra.iota
extra.iota.FunI

Nota:

e Hemos modificado la variable path para que sea accesible a Python. (versién Windows)
e El import no apunta directamente al médulo, pero especifica la ruta completa desde la parte superior del
paquete.

El reemplazar import extra.iota con import iota causara un error.

La siguiente variante también es valida:

main2.py

Sys path
path.append('..\\packages'

extra.iota FunI
FunI

Tu primer paquete: paso 8

Ahora vamos hasta el final del arbol: asi es como se obtiene acceso a los mddulos sigma y tau.

main2.py
Sys path
path.append('..\\packages'

extra.good.best.sigma
extra.good.best.tau funT

extra.good.best.sigma. funS

funT

Puedes hacer tu vida mas facil usando un alias:
main2.py
Sys path
path.append('..\\packages'

extra.good.best.sigma sig

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

https://miguelangel.torresegea.es/wiki/_export/code/info:cursos:netacad:python:pe2m1:paquetes?codeblock=20
https://miguelangel.torresegea.es/wiki/_export/code/info:cursos:netacad:python:pe2m1:paquetes?codeblock=21
https://miguelangel.torresegea.es/wiki/_export/code/info:cursos:netacad:python:pe2m1:paquetes?codeblock=22
https://miguelangel.torresegea.es/wiki/_export/code/info:cursos:netacad:python:pe2m1:paquetes?codeblock=23

Last

gg?(?fstfz:ozz info:cursos:netacad:python:pe2m1l:paquetes https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1l:paquetes

04:18

extra.good.alpha alp

sig.funS
alp.funA

Tu primer paquete: paso 9

Supongamos que hemos comprimido todo el subdirectorio, comenzando desde la carpeta extra (incluyéndola), y
se obtuvo un archivo llamado

extrapack zip_file.zip
. Después, colocamos el archivo dentro de la carpeta packages.

Ahora podemos usar el archivo zip en un rol de paquetes:

main2.py
Sys path
path.append('..\\packages\\extrapack.zip'

extra.good.best.sigma sig

extra.good.alpha alp
extra.iota funl
extra.good.beta funB

sig.funS
alp.funA
funl
funB

Si deseas realizar tus propios experimentos con el paquete que hemos creado, puedes descargarlo a
continuacién. Te alentamos a que lo hagas.

Puntos Clave

1. Mientras que un médulo esta disefiado para acoplar algunas entidades relacionadas como funciones,
variables o constantes, un paquete es un contenedor que permite el acoplamiento de varios médulos
relacionados bajo un mismo nombre. Dicho contenedor se puede distribuir tal cual (como un lote de archivos
implementados en un subarbol de directorio) o se puede empaquetar dentro de un archivo zip.

2. Durante la primera importacién del médulo, Python traduce su cddigo fuente a un formato semi-compilado
almacenado dentro de los archivos pyc y los implementa en el directorio pycache ubicado en el directorio de
inicio del médulo.

3. Si deseas decirle al usuario del médulo que una entidad en particular debe tratarse como privada (es decir,
no debe usarse explicitamente fuera del médulo), puedes marcar su nombre con el prefijo _o . No olvides que
esto es solo una recomendacién, no una orden.

https://miguelangel.torresegea.es/wiki/ Printed on 06/01/2026 13:28

https://miguelangel.torresegea.es/wiki/_media/info:cursos:netacad:python:pe2m1:extrapack_zip_file.zip
https://miguelangel.torresegea.es/wiki/_media/info:cursos:netacad:python:pe2m1:extrapack_zip_file.zip
https://miguelangel.torresegea.es/wiki/_export/code/info:cursos:netacad:python:pe2m1:paquetes?codeblock=24

06/01/2026 13:28 17/17 Modulo 1 (intermedio): Paquetes

4. Los nombres shabang, shebang, hasbang, poundbang y hashpling describen el digrafo escrito como #!, se
utiliza para instruir a los sistemas operativos similares a Unix sobre cdmo se debe iniciar el archivo fuente de
Python. Esta convencién no tiene efecto en MS Windows.

5. Si deseas convencer a Python de que debe tomar en cuenta el directorio de un paquete no estandar, su
nombre debe insertarse/agregarse en/a la lista de directorios de importacién almacenada en la variable path
contenida en el médulo sys.

6. Un archivo de Python llamado __init_.py se ejecuta implicitamente cuando un paquete que lo contiene esta
sujeto a importacién y se utiliza para inicializar un paquete y/o sus subpaquetes (si los hay). El archivo puede
estar vacio, pero no debe faltar.

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2ml:paquetes

Last update: 23/06/2022 04:18

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m1:paquetes

	Modulo 1 (intermedio): Paquetes
	Tu primer módulo: paso 1
	Tu primer módulo: paso 2
	Tu primer módulo: paso 3
	Tu primer módulo: paso 4
	Tu primer módulo: paso 5
	Tu primer módulo: paso 6
	Tu primer módulo: paso 7
	Tu primer módulo: paso 8
	Tu primer módulo: paso 9
	Tu primer módulo: paso 10
	Tu primer módulo: paso 11
	Tu primer módulo: paso 12
	Tu primer paquete: paso 1
	Tu primer paquete: paso 2
	Tu primer paquete: paso 4
	Tu primer paquete: paso 5
	Tu primer paquete: paso 6
	Tu primer paquete: paso 7
	Tu primer paquete: paso 8
	Tu primer paquete: paso 9
	Puntos Clave

