27/12/2025 14:19 1/33 Modulo 2 (intermedio): Cadenas

Modulo 2 (intermedio): Cadenas

Como las computadoras entienden los caracteres individuales

Has escrito algunos programas interesantes desde que comenzé este curso, pero todos ellos han procesado solo
un tipo de datos: los numéricos. Como sabes (puedes ver esto en todas partes), muchos datos de la
computadora no son nimeros: nombres, apellidos, direcciones, titulos, poemas, documentos cientificos, correos
electrénicos, sentencias judiciales, confesiones de amor y mucho, mucho mas.

Y2 T2

Todos estos datos deben ser almacenados, ingresados, emitidos, buscados y transformados por computadoras
como cualquier otro dato, sin importar si son caracteres (nicos o enciclopedias de multiples volimenes.

¢Cémo es esto posible?

¢Cémo puedes hacerlo en Python? Esto es lo que discutiremos ahora. Comencemos con como las computadoras
entienden los caracteres individuales.

Las computadoras almacenan los caracteres como numeros. Cada caracter utilizado por una
computadora corresponde a un nimero Unico, y viceversa. Esta asignacion debe incluir mas caracteres de los
que podrias esperar. Muchos de ellos son invisibles para los humanos, pero esenciales para las computadoras.

Algunos de estos caracteres se llaman espacios en blanco, mientras que otros se nombran caracteres de
control, porque su propdsito es controlar dispositivos de entrada y salida.

Un ejemplo de un espacio en blanco que es completamente invisible a simple vista es un cddigo especial, o un
par de cddigos (diferentes sistemas operativos pueden tratar este asunto de manera diferente), que se utilizan
para marcar el final de las lineas dentro de los archivos de texto.

Las personas no ven este signo (o estos signos), pero pueden observar el efecto de su aplicacién donde ven un
salto de linea.

Podemos crear practicamente cualquier cantidad de asignaciones de nUmeros con caracteres, pero la vida en
un mundo en el que cada tipo de computadora utiliza una codificacién de caracteres diferentes no seria muy
conveniente. Este sistema ha llevado a la necesidad de introducir un estandar universal y ampliamente
aceptado, implementado por (casi) todas las computadoras y sistemas operativos en todo el mundo.

El denominado ASCII (por sus siglas en inglés American Standard Code for Information Interchange). El Cédigo
Estdndar Americano para Intercambio de Informacién es el mas utilizado, y es posible suponer que casi todos
los dispositivos modernos (como computadoras, impresoras, teléfonos mdviles, tabletas, etc.) usan este cddigo.

El cédigo proporciona espacio para 256 caracteres diferentes, pero solo nos interesan los primeros 128. Si
deseas ver como se construye el cédigo, mira la tabla a continuacién. Haz clic en la tabla para ampliarla. Mirala
cuidadosamente: hay algunos datos interesantes. Observa el cédigo del caracter mas comun: el espacio. El cual
es el 32.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last update:
30/06/2022 info:cursos:netacad:python:pe2m?2:cadenas https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m2:cadenas
12:08

Character Code Character Code Character Code Character Code

Ahora verifica el cédigo de la letra minUscula a. El cual es 97. Ahora encuentra la A mayuscula. Su cédigo es 65.
Ahora calcula la diferencia entre el cddigo de la a y la A. Es igual a 32. Ese es el cédigo del espacio. Interesante,
ino es asi?

También ten en cuenta que las letras estdn ordenadas en el mismo orden que en el Alfabeto Latino.

118N

Ahora, el alfabeto latino no es suficiente para toda la humanidad. Los usuarios de ese alfabeto son minoria. Era
necesario idear algo mas flexible y capaz que ASCII, algo capaz de hacer que todo el software del mundo sea
susceptible de internacionalizacidn, porque diferentes idiomas usan alfabetos completamente diferentes, y a
veces estos alfabetos no son tan simples como el latino.

La palabra internacionalizacién se acorta cominmente a 118N.

iPor qué? Observa con cuidado, hay una | al inicio de la palabra, a continuacién hay 18 letras diferentes, y una
N al final.

A pesar del origen ligeramente humoristico, el término se utiliza oficialmente en muchos documentos y normas.

El software 118N es un estandar en los tiempos actuales. Cada programa tiene que ser escrito de una manera
gue permita su uso en todo el mundo, entre diferentes culturas, idiomas y alfabetos.

El codigo ASCIlI emplea ocho bits para cada signo. Ocho bits significan 256 caracteres diferentes. Los

https://miguelangel.torresegea.es/wiki/ Printed on 27/12/2025 14:19

27/12/2025 14:19 3/33 Modulo 2 (intermedio): Cadenas

primeros 128 se usan para el alfabeto latino estandar (tanto en mayulsculas como en mindsculas). ;Es posible
colocar todos los otros caracteres utilizados en todo el mundo a los 128 lugares restantes?

No, no lo es.

Puntos de cddigo y paginas de cddigos

Necesitamos un nuevo término: un punto de cédigo.

Un punto de c6digo es un numero que compone un caracter. Por ejemplo, el 32 es un punto de cédigo que
compone un espacio en codificacion ASCII. Podemos decir que el cédigo ASCII estandar consta de 128 puntos de
cédigo.

Como el ASCII estandar ocupa 128 de 256 puntos de cédigo posibles, solo puedes hacer uso de los 128
restantes.

No es suficiente para todos los idiomas posibles, pero puede ser suficiente para un idioma o para un pequefo
grupo de idiomas similares.

iSe puede establecer la mitad superior de los puntos de cédigo de manera diferente para diferentes
idiomas? Si, por supuesto. A tal concepto se le denomina una pagina de cédigos.

Una péagina de cddigos es un estandar para usar los 128 puntos de cddigo superiores para almacenar
caracteres especificos. Por ejemplo, hay diferentes paginas de cédigos para Europa Occidental y Europa del
Este, alfabetos cirilicos y griegos, idiomas arabe y hebreo, etc.

Esto significa que el mismo punto de cédigo puede formar diferentes caracteres cuando se usa en diferentes
paginas de cddigos.

Por ejemplo, el punto de cédigo 200 forma una C (una letra usada por algunas lenguas eslavas) cuando lo utiliza
la pagina de cédigos ISO/IEC 8859-2, pero forma un LU (una letra cirilica) cuando es usado por la pagina de
cédigos ISO/IEC 8859-5.

En consecuencia, para determinar el significado de un punto de cédigo especifico, debes conocer la pagina de
cédigos de destino.

En otras palabras, los puntos de cédigo derivados del cédigo de padginas son ambiguos.

Unicode

Las paginas de cddigos ayudaron a la industria informatica a resolver problemas de 118N durante algin tiempo,
pero pronto resulté que no serian una solucién permanente.

El concepto que resolvié el problema a largo plazo fue el Unicode.

Unicode asigna caracteres unicos (letras, guiones, ideogramas, etc.) a mas de un millon de puntos
de cddigo. Los primeros 128 puntos de cddigo Unicode son idénticos a ASCII, y los primeros 256 puntos de
cédigo Unicode son idénticos a la pagina de cédigos ISO/IEC 8859-1 (una pagina de cddigos disefiada para
idiomas de Europa occidental).

UCSs-4

El estandar Unicode no dice nada sobre como codificar y almacenar los caracteres en la memoria y los archivos.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last update:
30/06/2022 info:cursos:netacad:python:pe2m?2:cadenas https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m2:cadenas
12:08

Solo nombra todos los caracteres disponibles y los asigna a planos (un grupo de caracteres de origen, aplicacién
0 naturaleza similares).

Ucs-4 Group octet Plane octet Row oclet Cell octet

Existe mds de un estdndar que describe las técnicas utilizadas para implementar Unicode en computadoras y
sistemas de almacenamiento informaticos reales. El mas general de ellos es UCS-4.

El nombre proviene de Universal Character Set (Conjunto de Caracteres Universales).

UCS-4 emplea 32 bits (cuatro bytes) para almacenar cada caracter, y el cédigo es solo el nimero Unico de los
puntos de cédigo Unicode. Un archivo que contiene texto codificado UCS-4 puede comenzar con un BOM (byte
order mark - marca de orden de bytes), una combinacién no imprimible de bits que anuncia la naturaleza del
contenido del archivo. Algunas utilidades pueden requerirlo.

Como puedes ver, UCS-4 es un estdndar bastante derrochador: aumenta el tamafio de un texto cuatro veces en
comparacion con el estandar ASCII. Afortunadamente, hay formas mas inteligentes de codificar textos Unicode.

UTF-8

Uno de los mas utilizados es UTF-8.
El nombre se deriva de Unicode Transformation Format (Formato de Transformacion Unicode).

El concepto es muy inteligente. UTF-8 emplea tantos bits para cada uno de los puntos de cédigo como
realmente necesita para representarlos.

Por ejemplo:

¢ Todos los caracteres latinos (y todos los caracteres ASCII estandar) ocupan ocho bits.
¢ Los caracteres no latinos ocupan 16 bits.
¢ Los idedgrafos CJK (China-Japdn-Corea) ocupan 24 bits.

Debido a las caracteristicas del método utilizado por UTF-8 para almacenar los puntos de cédigo, no es
necesario usar el BOM, pero algunas de las herramientas lo buscan al leer el archivo, y muchos editores lo
configuran durante el guardado.

Python 3 es totalmente compatible con Unicode y UTF-8:

¢ Puedes usar caracteres codificados Unicode / UTF-8 para nombrar variables y otras entidades.
¢ Puedes usarlos durante todas las entradas y salidas.

Esto significa que Python3 estd completamente Internacionalizado.

Puntos Clave

1. Las computadoras almacenan caracteres como nimeros. Hay mas de una forma posible de codificar
caracteres, pero solo algunas de ellas ganaron popularidad en todo el mundo y se usan comdnmente en TI:
estas son ASCII (se emplea principalmente para codificar el alfabeto latino y algunos de sus derivados) y
UNICODE (capaz de codificar practicamente todos los alfabetos que utilizan los seres humanos).

https://miguelangel.torresegea.es/wiki/ Printed on 27/12/2025 14:19

27/12/2025 14:19 5/33 Modulo 2 (intermedio): Cadenas

2. Un nimero correspondiente a un caracter en particular se llama punto de cddigo.

3. UNICODE utiliza diferentes formas de codificacién cuando se trata de almacenar los caracteres usando
archivos o memoria de computadora: dos de ellas son UCS-4 y UTF-8 (esta Ultima es la mas comun ya que
desperdicia menos espacio de memoria).

BOM (Byte Order Mark), Una Marca de Orden de Bytes es una combinacién especial de bits que anuncia la
codificacién utilizada por el contenido de un archivo (por ejemplo, UCS-4 o UTF-B).

Cadenas: una breve resena

Hagamos un breve repaso de la naturaleza de las cadenas en Python.

En primer lugar, las cadenas de Python (o simplemente cadenas, ya que no vamos a discutir las cadenas de
ningln otro lenguaje) son secuencias inmutables.

Es muy importante tener en cuenta esto, porque significa que debes esperar un comportamiento familiar.
Analicemos el cédigo en el editor para entender de lo qué estamos hablando:

Observa el Ejemplo 1. La funcién len() empleada en las cadenas devuelve el nimero de caracteres que contiene
el argumento. La salida del cédigo es 2. Cualquier cadena puede estar vacia. Si es el caso, su longitud es 0
como en el Ejemplo 2.

No olvides que la diagonal invertida (\) empleada como un cardacter de escape, no esta incluida en la longitud

total de la cadena. El cédigo en el Ejemplo 3, da como salida un 3. Ejecuta los tres ejemplos de cédigo y
verificalo.

Ejemplo 1
word "by'
len(word
Ejemplo 2
empty t
len (empty
Ejemplo 3
i am ‘IN'm'

len(i_am

Cadenas multilinea

Ahora es un muy buen momento para mostrarte otra forma de especificar cadenas dentro del cédigo fuente de
Python. Ten en cuenta que la sintaxis que ya conoces no te permitird usar una cadena que ocupe mas de una
linea de texto.

Por esta razén, el cédigo siguiente es erréneo:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last update:
30/06/2022 info:cursos:netacad:python:pe2m?2:cadenas https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m2:cadenas
12:08

multiline = 'Linea #1
Linea #2'

print(len(multiline))
Afortunadamente, para este tipo de cadenas, Python ofrece una sintaxis simple, conveniente y separada.

multiline "''Linea #1
Linea #2'''

len(multiline

Como puedes ver, la cadena comienza con tres apdstrofes, no uno. El mismo apéstrofe triplicado se usa para
terminar la cadena.

El nimero de lineas de texto dentro de una cadena de este tipo es arbitrario.
La salida del cédigo es 17.

Cuenta los caracteres con cuidado. ;Es este resultado correcto o no? Se ve bien a primera vista, pero cuando
cuentas los caracteres, no lo es.

Linea #1 contiene ocho caracteres. Las dos lineas juntas contienen 16 caracteres. ;Perdimos un caracter?
;Dbénde? ;Cémo?

No, no lo hicimos.

El caracter que falta es simplemente invisible: es un espacio en blanco. Se encuentra entre las dos lineas de
texto.

Se denota como: \n.

(Lo recuerdas? Es un cardcter especial (de control) utilizado para forzar un avance de linea. No puedes verlo,
pero cuenta.

Las cadenas multilinea pueden ser delimitadas también por comillas triples, como aqui:
multiline = «»«Linea #1 Linea #2»«»
print(len(multiline))

Elige el método que sea mas cémodo. Ambos funcionan igual.

Operaciones con cadenas

Al igual que otros tipos de datos, las cadenas tienen su propio conjunto de operaciones permitidas, aunque son
bastante limitadas en comparacién con los nimeros.

En general, las cadenas pueden ser:

¢ Concatenadas (unidas).
¢ Replicadas.

La primera operacién la realiza el operador + (toma en cuenta que no es una adicién o suma) mientras que la
segunda por el operador * (toma en cuenta de nuevo que no es una multiplicacién).

https://miguelangel.torresegea.es/wiki/ Printed on 27/12/2025 14:19

27/12/2025 14:19 7/33 Modulo 2 (intermedio): Cadenas

La capacidad de usar el mismo operador en tipos de datos completamente diferentes (como nimeros o
cadenas) se llama overloading - sobrecarga (debido a que el operador estd sobrecargado con diferentes

tareas).

Analiza el ejemplo:

¢ El operador + es empleado en dos 0 mas cadenas y produce una nueva cadena que contiene todos los
caracteres de sus argumentos (nota: el orden es relevante aqui, en contraste con su versiéon numérica, la

cual es conmutativa).
e El operador * necesita una cadena y un nimero como argumentos; en este caso, el orden no importa:

puedes poner el nUmero antes de la cadena, o viceversa, el resultado serd el mismo: una nueva cadena
creada por la enésima replicacién de la cadena del argumento.

strl 'a'
str2 'b!
strl + str2
str2 + strl
* 19!
Ttk

El fragmento de cédigo produce el siguiente resultado:

ab

ba
aaaaa
bbbb

Nota: Los atajos de los operadores anteriores también son aplicables para las cadenas (+=y *-EI .

Operaciones con cadenas: ord()

Si deseas saber el valor del punto de cédigo ASCII/UNICODE de un caracter especifico, puedes usar la
funcién ord() (proveniente de ordinal).

La funcién necesita una cadena de un caracter como argumento - incumplir este requisito provoca una
excepcién TypeError, y devuelve un nimero que representa el punto de cédigo del argumento.

Demostracion de la funcidén ord ().

char 1 ‘a'
char 2 ' ' # space

ord(char 1
ord(char 2

Las salida del fragmento de cddigo es:

97
32

Ahora asigna diferentes valores a chl y ch2, por ejemplo, a (letra griega alfa), y e (una letra en el alfabeto
polaco); luego ejecuta el cédigo y ve qué resultado produce. Realiza tus propios experimentos.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last update:
30/06/2022 info:cursos:netacad:python:pe2m?2:cadenas https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m2:cadenas
12:08

Operaciones con cadenas: chr()

Si conoces el punto de cédigo (nimero) y deseas obtener el cardcter correspondiente, puedes usar la funcién
llamada chr().

La funcién toma un punto de cddigo y devuelve su caracter.

Invocéndolo con un argumento invalido (por ejemplo, un punto de cédigo negativo o invalido) provoca las
excepciones ValueError o TypeError.

Demostracion de la funcidn chr.

chr
chr

Ejecuta el cédigo en el editor, su salida es la siguiente:

a
a

Nota:

e chr(ord(x)) =
e ord(chr(x)) =

X
X

Cadenas como secuencias: indexacion

Ya dijimos antes que las cadenas de Python son secuencias. Es hora de mostrarte lo que significa
realmente.

Las cadenas no son listas, pero pueden ser tratadas como tal en muchos casos.

Por ejemplo, si deseas acceder a cualquiera de los caracteres de una cadena, puedes hacerlo usando
indexacion. Ejecuta el programa:

Indexando cadenas.
the string 'silly walks'

ix range(len(the string
the string[ix]|, end="' '

Ten cuidado, no intentes pasar los limites de la cadena, ya que provocara una excepcion.

La salida del ejemplo es:
silly walks

Por cierto, los indices negativos también se comportan como se espera. Comprueba esto tli mismo.

https://miguelangel.torresegea.es/wiki/ Printed on 27/12/2025 14:19

27/12/2025 14:19 9/33 Modulo 2 (intermedio): Cadenas

Cadenas como secuencias: iterando

El iterar a través de las cadenas funciona también. Observa el siguiente ejemplo:
Iterando a través de una cadena.
the string 'silly walks'

character the string:
character, end=" "'

La salida es la misma que el ejemplo anterior. Revisalo.
Rebanadas

Todo lo que sabes sobre rebanadas es utilizable.

Hemos reunido algunos ejemplos que muestran coémo funcionan las rebanadas en el mundo de las cadenas.
Observa el codigo en el editor, analizalo y ejecutalo.

No verds nada nuevo en el ejemplo, pero queremos que estés seguro de entender todas las lineas del cédigo.
Rebanadas
alpha "abdefg"

alpha
alpha
alphal:
alphal3: -
alphal-3:
alphal::
alpha

La salida del cédigo es

bd
efg
abd
e

e
adf
beg

Los operadores in y not in
El operador in

El operador in no deberia sorprenderte cuando se aplica a cadenas, simplemente comprueba si el
argumento izquierdo (una cadena) se puede encontrar en cualquier lugar dentro del argumento

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last update:
30/06/2022 info:cursos:netacad:python:pe2m?2:cadenas https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m2:cadenas
12:08

derecho (otra cadena).
El resultado es simplemente True(Verdadero) o False(Falso).

Observa el ejemplo a continuacién. Asi es como el operador in funciona:

alphabet "abcdefghijklmnopgrstuvwxyz"

" alphabet
"F" alphabet
"1 alphabet
"ghi" alphabet
"Xyz" alphabet

La salida del ejemplo es:
True
False
False

True
False

El operador not in

Como probablemente puedas deducir, el operador not in también es aplicable aqui.

Asi es como funciona:

alphabet "abcdefghijklmnopgrstuvwxyz"

" alphabet
"F" alphabet
"1 alphabet
"ghi" alphabet
"Xyz" alphabet

La salida del ejemplo es:

False
True
True
False
True

Las cadenas de Python son inmutables
También te hemos dicho que las cadenas de Python son inmutables. Esta es una caracteristica muy
importante. ;Qué significa?

Esto significa principalmente que la similitud de cadenas vy listas es limitada. No todo lo que puede hacerse con
una lista puede hacerse con una cadena.

La primera diferencia importante no te permite usar la instruccion del para eliminar cualquier cosa de

https://miguelangel.torresegea.es/wiki/ Printed on 27/12/2025 14:19

27/12/2025 14:19 11/33 Modulo 2 (intermedio): Cadenas

una cadena.

El ejemplo siguiente no funcionara:

alphabet "abcdefghijklmnopgrstuvwxyz"
alphabet

Lo Unico que puedes hacer con del y una cadena es eliminar la cadena como un todo. Intenta hacerlo.
Las cadenas de Python no tienen el método append() - no se pueden expander de ninguna manera.

El siguiente ejemplo es erréneo:

alphabet "abcdefghijklmnopgrstuvwxyz"
alphabet.append("A"

Con la ausencia del método append(), el método insert() también es ilegal:

alphabet "abcdefghijklmnopgrstuvwxyz"
alphabet.insert "A"

No pienses que la inmutabilidad de una cadena limita tu capacidad de operar con ellas.

La Unica consecuencia es que debes recordarlo e implementar tu céddigo de una manera ligeramente diferente:
alphabet "bcdefghijklmnopgrstuvwxy"

alphabet "a" + alphabet
alphabet = alphabet + "Zz"

alphabet

Esta forma de cédigo es totalmente aceptable, funcionard sin doblar las reglas de Python y traera el alfabeto
latino completo a tu pantalla:

abcdefghijklmnopgrstuvwxyz

Es posible que desees preguntar si el crear una nueva copia de una cadena cada vez que se modifica su
contenido empeora la efectividad del cédigo.

Si, lo hace un poco. Sin embargo, no es un problema en lo absoluto.

Operaciones con cadenas: min()

Ahora que comprendes que las cadenas son secuencias, podemos mostrarte algunas capacidades de secuencia
menos obvias. Las presentaremos utilizando cadenas, pero no olvides que las listas también pueden adoptar los
mismos trucos.

Comenzaremos con la funcion llamada min().

Esta funcién encuentra el elemento minimo de la secuencia pasada como argumento. Existe una
condicidn - la secuencia (cadena o lista) no puede estar vacia, de lo contrario obtendras una excepcién
ValueError.

Demonstrando min() - Ejemplo 1:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last update:
30/06/2022 info:cursos:netacad:python:pe2m?2:cadenas https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m2:cadenas
12:08

min("aAbByYzZ"

Demonstrando min() - Ejemplo 2 y 3:
t 'Los Caballeros Que Dicen "iNi!"'
"[' + min(t) + ']"
min(t
El programa Ejemplo 1 da la siguiente salida:

A

Nota: Es una A mayuscula. ;Por qué? Recuerda la tabla ASCII, ;qué letras ocupan las primeras posiciones,
mayusculas o minUsculas?

Hemos preparado dos ejemplos mas para analizar: Ejemplos 2 y 3.

Como puedes ver, presentan mas que solo cadenas. El resultado esperado se ve de la siguiente manera:

Nota: hemos utilizado corchetes para evitar que el espacio se pase por alto en tu pantalla.

Operaciones con cadenas: max()

Del mismo modo, una funcién llamada max() encuentra el elemento maximo de la secuencia.
Demostracion de max() - Ejemplo 1:

max ("aAbByYzZ"

Demostracion de max() - Ejemplo 2 & 3:
t 'Los Caballeros Que Dicen "iNi!"'
I[I + max t + I]I

max (t

La salida del programa es:

Nota: es una z minudscula.

Ahora veamos la funcién max() a los mismos datos del ejemplo anterior. Observa los Ejemplos 2 y 3 en el
editor.

La salida esperada es:

[il

https://miguelangel.torresegea.es/wiki/ Printed on 27/12/2025 14:19

27/12/2025 14:19 13/33 Modulo 2 (intermedio): Cadenas

2

Operaciones con cadenas: el método index()

El método index() (es un método, no una funcién) busca la secuencia desde el principio, para encontrar
el primer elemento del valor especificado en su argumento.

Nota: el elemento buscado debe aparecer en la secuencia - su ausencia causara una excepcion
ValueError.

El método devuelve el indice de la primera apariciéon del argumento (lo que significa que el resultado mas
bajo posible es 0, mientras que el mas alto es la longitud del argumento decrementado en 1).

Demonstrando el método index():
"aAbByYzZaA".index("b"
"aAbByYzZaA".index("Z"
"aAbByYzZaA".index("A"

Por lo tanto, el ejemplo en la salida del editor es:

~

Operaciones con cadenas: la funcion list()

La funcion list() toma su argumento (una cadena) y crea una nueva lista que contiene todos los
caracteres de la cadena, uno por elemento de la lista.

Nota: no es estrictamente una funcidn de cadenas - list() es capaz de crear una nueva lista de muchas otras
entidades (por ejemplo, de tuplas y diccionarios).

list("abcabc"

La salida es:

Operaciones con cadenas: el método count()

El método count() cuenta todas las apariciones del elemento dentro de la secuencia. La ausencia de tal
elemento no causa ningun problema.

"abcabc".count("b"
"abcabc'.count("d"

Observa el segundo ejemplo en el editor. jPuedes adivinar su salida?

Es:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last update:
30/06/2022 info:cursos:netacad:python:pe2m?2:cadenas https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m2:cadenas
12:08

Las cadenas de Python tienen un nimero significativo de métodos destinados exclusivamente al procesamiento
de caracteres. No esperes que trabajen con otras colecciones. La lista completa se presenta aqui:
https://docs.python.org/3.4/library/stdtypes.html#string-methods.

Te mostraremos los que consideramos mas Utiles.

Puntos Claves

1. Las cadenas de Python son secuencias inmutables y se pueden indexar, dividir en rebanadas e iterar como
cualquier otra secuencia, ademas de estar sujetas a los operadores in y not in. Existen dos tipos de cadenas en
Python:

e Cadenas de una linea, las cuales no pueden cruzar los limites de una linea, las denotamos usando
apostrofes (‘cadena') o comillas («cadena»).
¢ Cadenas multilinea, que ocupan mas de una linea de cédigo fuente, delimitadas por apdstrofes triples:

cadena

cadena

2. La longitud de una cadena esta determinada por la funcién len(). El caracter de escape (\) no es contado. Por
ejemplo:
len("\n\n"

Su salida es 2.

3. Las cadenas pueden ser concatenadas usando el operador +, y replicadas usando el operador *. Por
ejemplo:

asterisk P!

p'Lus II+II

decoration asterisk + plus) * 4 + asterisk
decoration

salida **4*4%4%,

4. El par de funciones chr() y ord() se pueden utilizar para crear un caracter utilizando su punto de cédigo y
para determinar un punto de cddigo correspondiente a un caracter. Las dos expresiones siguientes son siempre
verdaderas:

chr(ord(character character
ord(chr(codepoint codepoint

5. Algunas otras funciones que se pueden aplicar a cadenas son:

list(): crea una lista que consta de todos los caracteres de la cadena. max(): encuentra el caracter con el punto
de cédigo maximo. min(): encuentra el caracter con el punto de cdédigo minimo.

https://miguelangel.torresegea.es/wiki/ Printed on 27/12/2025 14:19

https://docs.python.org/3.4/library/stdtypes.html#string-methods

27/12/2025 14:19 15/33 Modulo 2 (intermedio): Cadenas

6. El método llamado index() encuentra el indice de una subcadena dada dentro de la cadena.

El método capitalize()

Veamos algunos métodos estandar de cadenas en Python. Vamos a analizarlos en orden alfabético, cualquier
orden tiene tanto desventajas como ventajas, por lo que la eleccién puede ser aleatoria.

El método capitalize() hace exactamente lo que dice - crea una nueva cadena con los caracteres
tomados de la cadena fuente, pero intenta modificarlos de la siguiente manera:

¢ Si el primer caracter dentro de la cadena es una letra (nota: el primer caracter es el elemento con
un indice igual a 0, no es el primer cardacter visible), se convertird a mayusculas.
* Todas las letras restantes de la cadena se convertiran a mintsculas.

No olvides que:

¢ La cadena original desde la cual se invoca el método no se cambia de ninguna manera, la inmutabilidad
de una cadena debe obedecerse sin reservas.

¢ La cadena modificada (en mayuscula en este caso) se devuelve como resultado; si no se usa de alguna
manera (asignala a una variable o pasala a una funcién / método) desaparecera sin dejar rastro.

Nota: los métodos no tienen que invocarse solo dentro de las variables. Se pueden invocar directamente desde
dentro de literales de cadena. Usaremos esa convencién regularmente: simplificara los ejemplos, ya que los
aspectos mas importantes no desapareceran entre asignaciones innecesarias.

Demostracién del método capitalize():
'aBcD'.capitalize

Esto es lo que imprime:
Abcd
Prueba algunos ejemplos mas avanzados y verifica su salida:

"Alpha".capitalize
"ALPHA' .capitalize
" Alpha'.capitalize
'123'.capitalize
"aByd".capitalize

El método center()

La variante de un pardmetro del método center() genera una copia de la cadena original, tratando de
centrarla dentro de un campo de un ancho especificado.

El centrado se realiza realmente al agregar algunos espacios antes y después de la cadena.
No esperes que este método demuestre habilidades sofisticadas. Es bastante simple.

El ejemplo en el editor usa corchetes para mostrar claramente donde comienza y termina realmente la cadena
centrada.

Demostracion del método center():

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last update:
30/06/2022 info:cursos:netacad:python:pe2m?2:cadenas https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m2:cadenas
12:08

'"[' + 'alpha'.center + ']
Su salida se ve de la siguiente manera:
[alpha 1

Si la longitud del campo de destino es demasiado pequefia para ajustarse a la cadena, se devuelve la cadena
original.

Puedes ver el método center() en mas ejemplos aqui:

'"[' + 'Beta'.center + ']
'"[" + 'Beta'.center + ']
'"[" + 'Beta'.center + ']

Ejecuta el cédigo anterior y verifica que salidas produce.

La variante de dos parametros de center() hace uso del cardcter del segundo argumento, en lugar
de un espacio. Analiza el siguiente ejemplo:

'"[' + 'gamma'.center k) 4+ ']
Es por eso que la salida ahora se ve asi:

[*******gamma********]

El método endswith()

El método endswith() comprueba si la cadena dada termina con el argumento especificado y
devuelve True(verdadero) o False(falso), dependiendo del resultado.

Nota: la subcadena debe adherirse al Gltimo caracter de la cadena; no se puede ubicar en algun lugar cerca del
final de la cadena.

Demostracion del método endswith():
"epsilon".endswith("on"
IISiII
Ilnoll
Su salida es:

si

Ahora deberias poder predecir la salida del fragmento de cédigo a continuacién:

t "zeta"
t.endswith("a"
.endswith("A"

t
t.endswith("et"
t.endswith("eta"

https://miguelangel.torresegea.es/wiki/ Printed on 27/12/2025 14:19

27/12/2025 14:19 17/33 Modulo 2 (intermedio): Cadenas

El método find()

El método find() es similar al método index(), el cual ya conoces - busca una subcadena y devuelve el indice de
la primera aparicién de esta subcadena, pero:

e Es mas seguro, no genera un error para un argumento que contiene una subcadena inexistente
(devuelve -1 en dicho caso).
e Funciona solo con cadenas - no intentes aplicarlo a ninguna otra secuencia.

Demostracion del método find():
"Eta".find("ta"
"Eta".find("mma"

El ejemplo imprime:

1
-1

Nota: no se debe de emplear find() si deseas verificar si un solo caracter aparece dentro de una cadena - el
operador in sera significativamente mas rapido.

Aqui hay otro ejemplo:

t "theta’
t.find('eta'
t.find('et'
t.find('the'
t.find('ha'

Si deseas realizar la busqueda, no desde el principio de la cadena, sino desde cualquier posicién, puedes
usar una variante de dos parametros del método find(). Mira el ejemplo:

'kappa'.find('a’'

El segundo argumento especifica el indice en el que se iniciara la busqueda (no tiene que estar dentro de
la cadena).

De las dos letras a, solo se encontrara la segunda. Ejecuta el cédigo y verifica.

Se puede emplear el método find() para buscar todas las ocurrencias de la subcadena, como aqui:

the text """A variation of the ordinary lorem ipsum

text has been used in typesetting since the 1960s

or earlier, when it was popularized by advertisements

for Letraset transfer sheets. It was introduced to

the Information Age in the mid-1980s by the Aldus Corporation,
which employed it in graphics and word-processing templates

for its desktop publishing program PageMaker (from Wikipedia)"""

fnd = the text.find('the'
fnd -
fnd
fnd = the text.find('the', fnd +

El cédigo imprime los indices de todas las ocurrencias del articulo the, y su salida se ve asi:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last update:
30/06/2022 info:cursos:netacad:python:pe2m?2:cadenas https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m2:cadenas
12:08

15
80
198
221
238

Existe también una mutacion de tres parametros del método find() - el tercer argumento apunta al
primer indice que no se tendra en cuenta durante la busqueda (en realidad es el limite superior de la
busqueda).

Observa el ejemplo a continuacién:

'kappa'.find('a’'
"kappa'.find('a’

El segundo argumento especifica el indice en el que se iniciard la busqueda (no tiene que estar dentro de la
cadena).

Por lo tanto, las salidas de ejemplo son:

1
-1

a no se puede encontrar dentro de los limites de blusqueda dados en el segundo print().

El método isalnum()

El método sin pardmetros llamado isalnum() comprueba si la cadena contiene solo digitos o caracteres
alfabéticos (letras) y devuelve True(verdadero) o False(falso) de acuerdo al resultado.

Demostracion del método the isalnum():
'lambda30"'.isalnum
'lambda' .isalnum
'30'.isalnum
'@'.isalnum
"lambda 30'.isalnum
"'.isalnum

Nota: cualquier elemento de cadena que no sea un digito o una letra hace que el método regrese False(falso).
Una cadena vacia también lo hace.

El resultado de ejemplo es:

True
True
True
False
False
False

Existen tres ejemplos mas aqui:

https://miguelangel.torresegea.es/wiki/ Printed on 27/12/2025 14:19

27/12/2025 14:19 19/33 Modulo 2 (intermedio): Cadenas

t 'Six lambdas'

t.isalnum
t 'ABIG'

t.isalnum
t '20E1"

t.isalnum

Ejecutalos y verifica su salida.

Nota: la causa del primer resultado es un espacio, no es ni un digito ni una letra.
El método isalpha()

El método isalpha() es mas especializado, se interesa en letras solamente.
Ejemplo 1: Demostracidon del método isapha():
"Moooo".isalpha
'Mu40'.isalpha
Su salida es:
True

False
salida

El método isdigit()

Al contrario, el método isdigit() busca solo digitos - cualquier otra cosa produce False(falso) como resultado.
Ejemplo 2: Demostracion del método isdigit():

'2018'.isdigit

"Year2019".isdigit

Su salida es:

True
False

El método islower()

El método islower() es una variante de isalpha() - solo acepta letras minUsculas.

Ejemplo 1: Demostracion del método islower():
"Moooo".islower
'moooo’.islower

False
True

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last update:

30/06/2022 info:cursos:netacad:python:pe2m?2:cadenas https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m2:cadenas
12:08

El método isspace()

El método isspace() identifica espacios en blanco solamente - no tiene en cuenta ningln otro caracter (el
resultado es entonces False).

Ejemplo 2: Demostracidén del método isspace(:
"\n '.isspace
" ".isspace
"mooo mooo mooo".isspace

True
True
False
salida

El método isupper()

El método isupper() es la versiéon en mayuscula de islower() - se concentra solo en letras mayusculas.

Ejemplo 3: Demostracidén del método isupper():
"Moooo".isupper
'moooo ' .isupper
'M0O000"' . isupper

False
False
True

El método join()

El método join() es algo complicado, asi que déjanos guiarte paso a paso:

e Como su nombre lo indica, el método realiza una unién y espera un argumento del tipo lista; se debe

asegurar que todos los elementos de la lista sean cadenas: de lo contrario, el método generard una
excepcién TypeError.

¢ Todos los elementos de la lista seran unidos en una sola cadena pero...

e ... la cadena desde la que se ha invocado el método sera utilizada como separador, puesta entre las
cadenas.

¢ La cadena recién creada se devuelve como resultado.

Demonstrating the join() method:
II’II.jOin Ilomicronll Ilpill Ilrholl

Vamos a analizarlo:

¢ El método join() se invoca desde una cadena que contiene una coma (la cadena puede ser larga o puede
estar vacia).

e El argumento del join es una lista que contiene tres cadenas.
¢ El método devuelve una nueva cadena.

Aqui esta:

https://miguelangel.torresegea.es/wiki/ Printed on 27/12/2025 14:19

27/12/2025 14:19 21/33 Modulo 2 (intermedio): Cadenas

omicron,pi,rho

El método lower()

El método lower() genera una copia de una cadena, reemplaza todas las letras mayusculas con sus
equivalentes en mintsculas, y devuelve la cadena como resultado. Nuevamente, la cadena original
permanece intacta.

Si la cadena no contiene caracteres en mayuscula, el método devuelve la cadena original.

Nota: El método lower() no toma ninglin parametro.

Demostracion del método lower():
"SiGmA=60".lower

sigma=60

El método Istrip()

El método sin parametros Istrip() devuelve una cadena recién creada formada a partir de la original eliminando
todos los espacios en blanco iniciales.

Demostracion del método the lstrip():
II[II + n tau II.'LStr.ip + II]II

Los corchetes no son parte del resultado, solo muestran los limites del resultado.

Las salida del ejemplo es:
[tau]

El método con un parametro Istrip() hace lo mismo que su versidn sin parametros, pero elimina todos los
caracteres incluidos en el argumento (una cadena), no solo espacios en blanco:

"www.cisco.com".lstrip("w."
Aqui no se necesitan corchetes, ya que el resultado es el siguiente:
cisco.com

(Puedes adivinar la salida del fragmento a continuacién? Piensa cuidadosamente. Ejecuta el cédigo y verifica
tus predicciones.

"pythoninstitute.org".lstrip(".org"

El método replace()

El método replace() con dos parametros devuelve una copia de la cadena original en la que todas las
apariciones del primer argumento han sido reemplazadas por el segqundo argumento.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last update:
30/06/2022 info:cursos:netacad:python:pe2m?2:cadenas https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m2:cadenas
12:08

Demostracidon del método replace():
"www.netacad.com".replace("netacad.com", "pythoninstitute.org"
"This is it!".replace("is", "are"
"Apple juice".replace("juice", ""

La salida del ejemplo es:

www.pythoninstitute.org
Thare are it!
Apple

Si el segundo argumento es una cadena vacia, reemplazar significa realmente eliminar el primer
argumento de la cadena. ;Qué tipo de magia ocurre si el primer argumento es una cadena vacia?

La variante del método replace() con tres parametros emplea un tercer argumento (un nimero) para limitar
el nimero de reemplazos.

Observa el cédigo modificado a continuacién:

"This is it!".replace("is", "are"
"This is it!".replace("is", "are"

El método rfind()

Los métodos de uno, dos y tres parametros denominados rfind() hacen casi lo mismo que sus contrapartes (las
que carecen del prefijo r), pero comienzan sus busquedas desde el final de la cadena, no el principio (de ahi e
prefijo r, de reversa).

Demostracion del método rfind():
"tau tau tau".rfind("ta"
"tau tau tau".rfind("ta"
"tau tau tau".rfind("ta"

El método rstrip()

Dos variantes del método rstrip() hacen casi lo mismo que el método Istrip, pero afecta el lado opuesto de
la cadena.

Demostracién del método rstrip():
“[" + " upsilon ".rstrip() + "]"
"cisco.com".rstrip(".com"

El método split()

El método split() divide la cadena y crea una lista de todas las subcadenas detectadas.

El método asume que las subcadenas estan delimitadas por espacios en blanco - los espacios no
participan en la operacion y no se copian en la lista resultante.

https://miguelangel.torresegea.es/wiki/ Printed on 27/12/2025 14:19

27/12/2025 14:19 23/33 Modulo 2 (intermedio): Cadenas

Si la cadena esta vacia, la lista resultante también esta vacia.

Demostracidén del método split():
"phi chi\npsi".split

['phi', 'chi', 'psi']

Nota: la operacidn inversa se puede realizar por el método join().

El método startswith()

El método startswith() es un espejo del método endswith() - comprueba si una cadena dada comienza con la
subcadena especificada.

Demostracion del método startswith():

"omega".startswith("meg"
"omega".startswith("om"

False
True

El método strip()

El método strip() combina los efectos causados por rstrip() y Istrip() - crea una nueva cadena que carece de
todos los espacios en blanco iniciales y finales.

Demostracién del método strip():
n [II + n aleph n .Strip + II] n

[aleph]

El método swapcase()

El método swapcase() crea una nueva cadena intercambiando todas las letras por mayusculas o mindsculas
dentro de la cadena original: los caracteres en mayuscula se convierten en minudsculas y viceversa.

Todos los demas caracteres permanecen intactos.

Observa el primer ejemplo en el editor. ;Puedes adivinar la salida? No se verd nada bien, pero debes
observarla:

Demostracién del método swapcase():
"Yo sé que no sé nada.".swapcase

y0 SE QUE NO SE NADA.

El método title()

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last update:
30/06/2022 info:cursos:netacad:python:pe2m?2:cadenas https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m2:cadenas
12:08

El método title() realiza una funcién algo similar cambia la primera letra de cada palabra a mayusculas,
convirtiendo todas las demas a minusculas.

Demostracion del método title():
"Yo sé que no sé nada. Part 1.".title

Yo Sé Que No Sé Nada. Parte 1.

El método upper()

Por Gltimo, pero no menos importante, el método upper() hace una copia de la cadena de origen, reemplaza
todas las letras minUsculas con sus equivalentes en maydusculas, y devuelve la cadena como resultado.

Demostracién del método upper():
"Yo sé que no sé nada. Part 2.".upper

YO SE QUE NO SE NADA. PARTE 2.

Puntos Clave

1. Algunos de los métodos que ofrecen las cadenas son:

o capitalize(): cambia todas las letras de la cadena a mayusculas.

¢ center(): centra la cadena dentro de una longitud conocida.

¢ count(): cuenta las ocurrencias de un caracter dado.

e join(): une todos los elementos de una tupla/lista en una cadena.

¢ lower(): convierte todas las letras de la cadena en minUdsculas.

o Istrip(): elimina los caracteres en blanco al principio de la cadena.

¢ replace(): reemplaza una subcadena dada con otra.

¢ rfind(): encuentra una subcadena comenzando por el final de la cadena.
e rstrip(): elimina los caracteres en blanco al final de la cadena.

¢ split(): divide la cadena en una subcadena usando un delimitador dado.
 strip(): elimina los espacios en blanco iniciales y finales.

e swapcase(): intercambia las mayusculas y mindsculas de las letras.

o title(): hace que la primera letra de cada palabra sea mayduscula.

e upper(): convierte todas las letras de la cadena en letras mayusculas.

2. El contenido de las cadenas se puede determinar mediante los siguientes métodos (todos devuelven valores
booleanos):

e endswith(): ;La cadena termina con una subcadena determinada?
¢ isalnum(): ;La cadena consta solo de letras y digitos?

¢ isalpha(): ;La cadena consta solo de letras?

e islower(): ;La cadena consta solo de letras mindsculas?

¢ isspace(): ;La cadena consta solo de espacios en blanco?

e isupper(): ;La cadena consta solo de letras mayusculas?

o startswith(): ;La cadena consta solo de letras mayusculas?

https://miguelangel.torresegea.es/wiki/ Printed on 27/12/2025 14:19

27/12/2025 14:19 25/33 Modulo 2 (intermedio): Cadenas

Comparando cadenas

Las cadenas en Python pueden ser comparadas usando el mismo conjunto de operadores que se emplean con
los nimeros.

Observa estos operadores: también sirven para comparar cadenas:

°
T AV YV
I

Existe un «pero»: los resultados de tales comparaciones a veces pueden ser un poco sorprendentes. No olvides
gue Python no es consciente (no puede serlo de ninguna manera) de problemas lingiisticos sutiles,
simplemente compara valores de puntos de cédigo, caracter por caricter.

Los resultados que se obtienen de una operacién de este tipo a veces son sorprendentes. Comencemos con los
€asos mas simples.

Dos cadenas son iguales cuando consisten de los mismos caracteres en el mismo orden. Del mismo modo, dos
cadenas no son iguales cuando no consisten de los mismos caracteres en el mismo orden.

Ambas comparaciones dan True (verdadero) como resultado:

'alpha' == 'alpha'
'alpha' != 'Alpha'

La relacién entre cadenas se determina al comparar el primer cardacter diferente en ambas cadenas (ten
en cuenta los puntos de cédigo ASCII / UNICODE en todo momento).

Cuando se comparan dos cadenas de diferentes longitudes y la mas corta es idéntica a la mas larga, la cadena
mas larga se considera mayor.

Justo como aqui:
'alpha' < 'alphabet'

La comparacion es True (verdadera).

La comparacién de cadenas siempre distingue entre mayusculas y mindsculas (las letras mayusculas se
consideran menores en comparacion con las minusculas).

La expresion es True (verdadera):
'beta' > 'Beta’

AuUn si una cadena contiene solo digitos, todavia no es un niimero. Se interpreta como lo que es, como
cualquier otra cadena regular, y su aspecto numérico (potencial) no se toma en cuenta, en ninguna manera.

Observa los ejemplos:

'10' == '010"
'10' > '010"
I10I > I8I

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last update:
30/06/2022 info:cursos:netacad:python:pe2m?2:cadenas https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m2:cadenas
12:08

I20I < I8I
I20I < I8@I

Producen los siguientes resultados:

False
True
False
True
True

El comparar cadenas con los niimeros generalmente es una mala idea.

Las Unicas comparaciones que puede realizar con impunidad son aquellas simbolizadas por los operadores

*x y **I=x*_E| primero siempre devuelve False (falso), mientras
que el segundo siempre devuelve True (verdadero).

El uso de cualquiera de los operadores de comparacién restantes generard una excepcioén TypeError.

Vamos a verlo:

'10' == 10
'10' != 10
'10' == 1
'10' I= 1
'10' > 10

Los resultados en este caso son:

False
True
False
True
TypeError exception

Ordenamiento

La comparacién esta estrechamente relacionada con el ordenamiento (o mas bien, el ordenamiento es, de
hecho, un caso muy sofisticado de comparacién).

Esta es una buena oportunidad para mostrar dos formas posibles de ordenar listas que contienen cadenas.
Dicha operacién es muy comun en el mundo real: cada vez que ves una lista de nombres, productos, titulos o
ciudades, esperas que este ordenada.

Supongamos que deseas ordenar la siguiente lista:
greek = ['omega', 'alpha', 'pi', 'gamma']

En general, Python ofrece dos formas diferentes de ordenar las listas.

https://miguelangel.torresegea.es/wiki/ Printed on 27/12/2025 14:19

27/12/2025 14:19 27/33 Modulo 2 (intermedio): Cadenas

El primero se implementa con una funcién llamada sorted().

La funcién toma un argumento (una lista) y retorna una nueva lista, con los elementos ordenados del
argumento. (Nota: esta descripcidn estd un poco simplificada en comparacién con la implementacién real; lo
discutiremos mas adelante).

La lista original permanece intacta.

Demostracidon de la funcidn sorted():
first greek ‘omega', 'alpha', 'pi', 'gamma'
first greek 2 = sorted(first greek

first greek
first greek 2

El cédigo produce el siguiente resultado:

['omega', 'alpha', 'pi', 'gamma']
['alpha', 'gamma', 'omega', 'pi']

El segundo método afecta a la lista misma - no se crea una nueva lista. El ordenamiento se realiza por el
método denominado sort().

Demostracion del método sort():
second _greek 'omega', 'alpha', 'pi', 'gamma'
second greek

second greek.sort
second greek

La salida no ha cambiado:

['omega', 'alpha', 'pi', 'gamma']
['alpha', 'gamma', 'omega', 'pi']

Si necesitas un ordenamiento diferente, debes convencer a la funcién o método de cambiar su comportamiento
predeterminado. Lo discutiremos pronto.

Cadenas frente a numeros

Hay dos cuestiones adicionales que deberian discutirse aqui: ¢Cémo convertir un nimero (un entero o un
flotante) en una cadena, y viceversa? Puede ser necesario realizar tal transformacién. Ademas, es una
forma rutinaria de procesar datos de entrada o salida.

La conversidon de cadena a niUmero es simple, ya que siempre es posible. Se realiza mediante una funcién
llamada str().

Justo como aqui:

itg
flt
si = str(itg

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last update:
30/06/2022 info:cursos:netacad:python:pe2m?2:cadenas https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m2:cadenas
12:08

sf str(flt

si + ' ' + sf
La salida del cddigo es:
13 1.3

La transformacion inversa solo es posible cuando la cadena representa un nimero valido. Si no se cumple la
condicién, espera una excepcién ValueError.

Emplea la funcion int() si deseas obtener un entero, y float() si necesitas un valor punto flotante.

Justo como aqui:

si 13"

sf 1.3
itg = int(si
flt float (sf

itg + flt
Esto es lo que verds en la consola:

14.3

Puntos Claves

1. Las cadenas se pueden comparar con otras cadenas utilizando operadores de comparacién generales, pero
compararlas con nimeros no da un resultado razonable, porque ninguna cadena puede ser igual a ningun
otro nimero. Por ejemplo:

e cadena == nUmero es siempre False (falso).
e cadena !'= nlimero es siempre True (verdadero).
¢ cadena >= nUmero siempre genera una excepcion.

2. El ordenamiento de listas de cadenas se puede realizar mediante:

Una funcidn llamada sorted(), crea una nueva, lista ordenada. Un método llamado sort(), el cual ordena la
lista en el momento.

3. Un nimero se puede convertir en una cadena empleando la funcién str().

4. Una cadena se puede convertir en un nimero (aunque no todas las cadenas) empleando ya sea la funcién
int() o float(). La conversidn falla si la cadena no contiene un nimero valido (se genera una excepcién en dicho
€aso).

ejemplo: El Cifrado César: encriptando un mensaje

Te mostraremos cuatro programas simples para presentar algunos aspectos del procesamiento de cadenas en
Python. Son intencionalmente simples, pero los problemas de laboratorio seran significativamente mas
complicados.

https://miguelangel.torresegea.es/wiki/ Printed on 27/12/2025 14:19

27/12/2025 14:19 29/33 Modulo 2 (intermedio): Cadenas

El primer problema que queremos mostrarte se llama Cifrado César - mas detalles aqui:
https://en.wikipedia.org/wiki/Caesar_cipher.

Este cifrado fue (probablemente) inventado y utilizado por Cayo Julio César y sus tropas durante las Guerras
Galas. La idea es bastante simple: cada letra del mensaje se reemplaza por su consecuente mas cercano (A se
convierte en B, B se convierte en C, y asi sucesivamente). La Unica excepcion es la Z, la cual se convierte en A.

El programa en el editor es una implementaciéon muy simple (pero funcional) del algoritmo.

Cifrado César.
text = input("Ingresa tu mensaje: ")
cipher = ""
for char in text:
if not char.isalpha():
continue
char = char.upper()
code = ord(char) + 1
if code > ord('Z")
code = ord('A')
cipher += chr(code)

print(cipher)

Se ha escrito utilizando los siguientes supuestos:

» Solo acepta letras latinas (nota: los Romanos no usaban espacios en blanco ni digitos).
e Todas las letras del mensaje estan en mayusculas (nota: los Romanos solo conocian las mayusculas).

Veamos el cédigo:

¢ La linea 02: pide al usuario que ingrese un mensaje (sin cifrar) de una linea.

¢ La linea 03: prepara una cadena para el mensaje cifrado (esta vacia por ahora).

¢ La linea 04: inicia la iteracién a través del mensaje.

¢ La linea 05: si el caracter actual no es alfabético...

¢ Lalinea 06: ...ignoralo.

e La linea 07: convierta la letra a mayUsculas (es preferible hacerlo a ciegas, en lugar de verificar si es
necesario o no).

e La linea 08: obtén el cédigo de la letra e increméntalo en uno.

¢ La linea 09: si el cddigo resultante ha «dejado» el alfabeto latino (si es mayor que el cédigo de la Z)...

e Lalinea 10: ... cambialo al cédigo de la A.

e La linea 11: agrega el caracter recibido al final del mensaje cifrado.

¢ Lalinea 13: imprime el cifrado.

El cédigo, con este mensaje:
AVE CAESAR
Da como salida:

BWFDBFTBS

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

https://en.wikipedia.org/wiki/Caesar_cipher

Last update:
30/06/2022 info:cursos:netacad:python:pe2m?2:cadenas https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m2:cadenas
12:08

ejemplo: El Cifrado César: descifrando un mensaje

La operacién inversa ahora deberia ser clara para ti: solo presentamos el cédigo tal como estd, sin ninguna
explicacién.

Observa el cddigo en el editor. Comprueba cuidadosamente si funciona. Usa el criptograma del programa
anterior.

Cifrado César - descifrar un mensaje.
cipher = input('Ingresa tu criptograma: ')
text = ""
for char in cipher:
if not char.isalpha():
continue
char = char.upper()
code = ord(char) - 1
if code < ord('A'):
code = ord('Z")
text += chr(code)

print(text)

ejemplo: El Procesador de Numeros

El tercer programa muestra un método simple que permite ingresar una linea llena de nimeros y sumarlos
facilmente. Nota: la funcién input(), combinada junto con las funciones int() o float(), no es lo adecuado para
este propdsito.

El procesamiento serd extremadamente facil: queremos que se sumen los nimeros.
Observa el cédigo en el editor. Analicémoslo.
Emplear listas puede hacer que el cédigo sea mds pequefio. Puedes hacerlo si quieres.

Presentemos nuestra version:

#Procesador de NUmeros.

line = input("Ingresa una linea de numeros, sepdralos con espacios: ")
strings = line.split()
total = 0
try:

for substr in strings:

total += float(substr)

print("El total es:", total)
except:

print(substr, "no es un numero.")

https://miguelangel.torresegea.es/wiki/ Printed on 27/12/2025 14:19

27/12/2025 14:19 31/33 Modulo 2 (intermedio): Cadenas

La linea 03: pide al usuario que ingrese una linea llena de cualquier cantidad de nimeros (los nimeros
pueden ser flotantes).

La linea 04: divide la linea en una lista con subcadenas.

La linea 05: se inicializa la suma total a cero.

La linea 06: como la conversién de cadena a flotante puede generar una excepcién, es mejor continuar
con la proteccién del bloque try-except.

La linea 07: itera a través de la lista...

La linea 08: ... e intenta convertir todos sus elementos en nimeros flotantes; si funciona, aumenta la
suma.

La linea 09: todo esta bien hasta ahora, asi que imprime la suma.

La linea 10: el programa termina aqui en caso de error.

La linea 11: imprime un mensaje de diagnéstico que muestra al usuario el motivo de la falla.

El codigo tiene una debilidad importante: muestra un resultado falso cuando el usuario ingresa una linea vacia.
iPuedes arreglarlo?

ejemplo: El Validador IBAN

El cuarto programa implementa (en una forma ligeramente simplificada) un algoritmo utilizado por los bancos
Europeos para especificar los nimeros de cuenta. El estandar llamado IBAN (NUimero de cuenta bancaria
internacional) proporciona un método simple y bastante confiable para validar los nimeros de cuenta contra
errores tipograficos simples que pueden ocurrir durante la reescritura del nimero, por ejemplo, de documentos
en papel, como facturas o facturas en las computadoras.

Puedes encontrar mas detalles aqui: https://en.wikipedia.org/wiki/International_Bank_Account Number.

Un nimero de cuenta compatible con IBAN consta de:

Un cddigo de pais de dos letras tomado del estandar ISO 3166-1 (por ejemplo, FR para Francia, GB para
Gran Bretafia DE para Alemania, y asi sucesivamente).

Dos digitos de verificacién utilizados para realizar las verificaciones de validez: pruebas rapidas y
simples, pero no totalmente confiables, que muestran si un nimero es invalido (distorsionado por un
error tipografico) o valido.

El nimero de cuenta real (hasta 30 caracteres alfanuméricos; la longitud de esa parte depende del pais).

El estandar dice que la validacion requiere los siguientes pasos (segin Wikipedia):

(Paso 1) Verificar que la longitud total del IBAN sea correcta segun el pais (este programa no lo harg,
pero puedes modificar el cédigo para cumplir con este requisito si o deseas; nota: pero debes ensefar al
cddigo a conocer todas las longitudes utilizadas en Europa).

(Paso 2) Mueve los cuatro caracteres iniciales al final de la cadena (es decir, el cédigo del pais y los
digitos de verificacién).

(Paso 3) Reemplaza cada letra en la cadena con dos digitos, expandiendo asi la cadena, donde A = 10, B
=11..Z=35.

(Paso 4) Interpreta la cadena como un entero decimal y calcula el residuo de ese nimero dividiéndolo
entre 97. Si el residuo es 1, pasa la prueba de verificacién de digitos y el IBAN puede ser valido.

Validador IBAN.

iban
iban

input("Ingresa un IBAN, por favor: ")
iban.replace(' ','")

if not iban.isalnum():

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

https://en.wikipedia.org/wiki/International_Bank_Account_Number

Last update:
30/06/2022 info:cursos:netacad:python:pe2m?2:cadenas https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m2:cadenas
12:08

print("Has introducido caracteres no validos.")
elif len(iban) < 15:
print("El IBAN ingresado es demasiado corto.")
elif len(iban) > 31:
print("El IBAN ingresado es demasiado largo.")
else:
iban = (iban[4:] + iban[0:4]).upper()
iban2 = "'
for ch in iban:
if ch.isdigit():
iban2 += ch
else:
iban2 += str(10 + ord(ch) - ord('A'))
iban = int(iban2)
if iban % 97 == 1:
print("El IBAN ingresado es valido.")
else:
print("El IBAN ingresado no es valido.")

e Linea 03: pide al usuario que ingrese el IBAN (el nUmero puede contener espacios, ya que mejoran
significativamente la legibilidad del nimero...

e Linea 04: ... pero remueve los espacios de inmediato).

e Linea 05: el IBAN ingresado debe constar solo de digitos y letras, de lo contrario...

¢ Linea 06: ... muestra un mensaje.

e Linea 07: el IBAN no debe tener menos de 15 caracteres (esta es la variante mas corta, utilizada en
Noruega).

¢ Linea 08: si es mas corto, se informa al usuario.

¢ Linea 09: ademas, el IBAN no puede tener mas de 31 caracteres (esta es la variante mas larga, utilizada
en Malta).

e Linea 10: si es mas largo, se le informa al usuario.

¢ Linea 11: se comienza con el procesamiento.

e Linea 12: se mueven los cuatro caracteres iniciales al final del nimero y se convierten todas las letras a
mayusculas (paso 02 del algoritmo).

e Linea 13: esta es la variable utilizada para completar el nUmero, creada al reemplazar las letras con
digitos (de acuerdo con el paso 03 del algoritmo).

e Linea 14: iterar a través del IBAN

e Linea 15: si el caracter es un digito...

¢ Linea 16: ... se copia.

e Linea 17: de lo contrario...

e Linea 18: ... conviértelo en dos digitos (observa cdmo se hace aqui).

¢ Linea 19: la forma convertida del IBAN estd lista: ahora se convierte en un nimero entero.

e Linea 20: ;el residuo de la division de iban2 entre 97 es igual a 1?

e Linea 21: si es asi, entonces el nimero es correcto.

e Linea 22: de lo contrario...

e Linea 23: ... el nimero no es valido.

Agreguemos algunos datos de prueba (todos estos nimeros son validos; puedes invalidarlos cambiando
cualquier caracter).

Inglés: GB72 HBZU 7006 7212 1253 00
Francés: FR76 30003 03620 00020216907 50
Aleman: DE02100100100152517108

https://miguelangel.torresegea.es/wiki/ Printed on 27/12/2025 14:19

27/12/2025 14:19 33/33 Modulo 2 (intermedio): Cadenas

Puntos Claves

1. Las cadenas son herramientas clave en el procesamiento de datos modernos, ya que la mayoria de los datos
Gtiles son en realidad cadenas. Por ejemplo, el uso de un motor de bldsqueda web (que parece bastante trivial
en estos dias) utiliza un procesamiento de cadenas extremadamente complejo, que involucra cantidades
inimaginables de datos.

2. El comparar cadenas de forma estricta (como lo hace Python) puede ser muy insatisfactorio cuando se trata
de busquedas avanzadas (por ejemplo, durante consultas extensas a bases de datos). En respuesta a esta
demanda, se han creado e implementado una serie de algoritmos de comparaciéon de cadenas difusos. Estos
algoritmos pueden encontrar cadenas que no son iguales en el sentido de Python, pero que son similares.

Uno de esos conceptos es la Distancia Hamming, que se utiliza para determinar la similitud de dos cadenas.
Si este tema te interesa, puedes encontrar mas informacion al respecto aqui:
https://en.wikipedia.org/wiki/Hamming_distance. Otra solucién del mismo tipo, pero basada en un supuesto
diferente, es la Distancia Levenshtein descrita aqui: https://en.wikipedia.org/wiki/Levenshtein_distance.

3. Otra forma de comparar cadenas es encontrar su similitud acustica, lo que significa un proceso que lleva a
determinar si dos cadenas suenan similares (como «echo» y «hecho»). Esa similitud debe establecerse para
cada idioma (o incluso dialecto) por separado.

Un algoritmo utilizado para realizar una comparacién de este tipo para el idioma Inglés se llama Soundex y se
inventd, no lo creeras, en 1918. Puedes encontrar mas informacién al respecto aqui:
https://en.wikipedia.org/wiki/Soundex.

4. Debido a la precision limitada de los datos enteros y flotantes nativos, a veces es razonable almacenary
procesar valores numéricos enormes como cadenas. Esta es la técnica que usa Python cuando se le fuerza a
operar con un nimero entero que consta de una gran cantidad de digitos.

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:

Last update: 30/06/2022 12:08

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

https://en.wikipedia.org/wiki/Hamming_distance
https://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/Soundex
https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m2:cadenas

	Modulo 2 (intermedio): Cadenas
	Cómo las computadoras entienden los caracteres individuales
	I18N

	Puntos de código y páginas de códigos
	Unicode
	UCS-4
	UTF-8

	Puntos Clave
	Cadenas: una breve reseña
	Cadenas multilínea
	Operaciones con cadenas
	Operaciones con cadenas: ord()
	Operaciones con cadenas: chr()
	Cadenas como secuencias: indexación
	Cadenas como secuencias: iterando
	Rebanadas
	Los operadores in y not in
	El operador in

	El operador not in
	Las cadenas de Python son inmutables
	Operaciones con cadenas: min()
	Operaciones con cadenas: max()
	Operaciones con cadenas: el método index()
	Operaciones con cadenas: la función list()
	Operaciones con cadenas: el método count()

	Puntos Claves
	El método capitalize()
	El método center()
	El método endswith()
	El método find()
	El método isalnum()
	El método isalpha()
	El método isdigit()
	El método islower()
	El método isspace()
	El método isupper()

	El método join()
	El método lower()
	El método lstrip()
	El método replace()
	El método rfind()
	El método rstrip()
	El método split()
	El método startswith()
	El método strip()
	El método swapcase()
	El método title()
	El método upper()
	Puntos Clave
	Comparando cadenas
	** y **!=**. El primero siempre devuelve False (falso), mientras que el segundo siempre devuelve True (verdadero).
	Ordenamiento
	Cadenas frente a números
	Puntos Claves
	ejemplo: El Cifrado César: encriptando un mensaje

	ejemplo: El Cifrado César: descifrando un mensaje
	ejemplo: El Procesador de Números
	ejemplo: El Validador IBAN
	Puntos Claves

