14/02/2026 16:54 1/23 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

Modulo 3 (intermedio): Los conceptos basicos del
enfoque orientado a objetos

Demos un paso fuera de la programacién y las computadoras, y analicemos temas de programacion orientada a
objetos.

Casi todos los programas y técnicas que has utilizado hasta ahora pertenecen al estilo de programacién
procedimental. Es cierto que has utilizado algunos objetos incorporados, pero cuando nos referimos a ellos, se
mencionan lo minimo posible.

La programacién procedimental fue el enfoque dominante para el desarrollo de software durante décadas de Tl,
y todavia se usa en la actualidad. Ademas, no va a desaparecer en el futuro, ya que funciona muy bien para
proyectos especificos (en general, no muy complejos y no grandes, pero existen muchas excepciones a esa
regla).

El enfoque orientado a objetos es bastante joven (mucho mas joven que el enfoque procedimental) y es
particularmente Util cuando se aplica a proyectos grandes y complejos llevados a cabo por grandes equipos
formados por muchos desarrolladores.

Este tipo de programacién en un proyecto facilita muchas tareas importantes, por ejemplo, dividir el proyecto
en partes pequenas e independientes y el desarrollo independiente de diferentes elementos del proyecto.

Python es una herramienta universal para la programacion procedimental y orientada a objetos. Se
puede utilizar con éxito en ambos enfoques.

Ademads, puedes crear muchas aplicaciones Utiles, incluso si no se sabe nada sobre clases y objetos, pero debes
tener en cuenta que algunos de los problemas (por ejemplo, el manejo de la interfaz grafica de usuario) puede
requerir un enfoque estricto de objetos.

Afortunadamente, la programacién orientada a objetos es relativamente simple.

CLASS
SEAFOOD 4 NAME
[ searcc0 | (8
P .Q' . ° 1 N
- . . * -'
8. T8

[ ]
d ’ /> . . ATTRIBUTES
[ ]
[ ]

METHODS :
SWIM
DIVE

Enfoque procedimental frente al enfoque orientado a objetos

WEIGHT
DIET
TASTE

En el enfoque procedimental, es posible distinguir dos mundos diferentes y completamente separados: el
mundo de los datos y el mundo del cédigo. El mundo de los datos esta poblado con variables de diferentes
tipos, mientras que el mundo del cédigo esta habitado por cddigos agrupados en médulos y funciones.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last
update:
03/07/2022
12:13

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1656875606

Las funciones pueden usar datos, pero no al revés. Ademas, las funciones pueden abusar de los datos, es decir,
usar el valor de manera no autorizada (por ejemplo, cuando la funcién seno recibe el saldo de una cuenta
bancaria como parametro).

Los datos no pueden usar funciones. ;Pero es esto completamente cierto? ;Hay algunos tipos especiales de
datos que puedan usar funciones?

Si, los hay, los llamados métodos. Estas son funciones que se invocan desde dentro de los datos, no junto con
ellos. Si puedes ver esta distincién, has dado el primer paso en la programacién de objetos.

El enfoque orientado a objetos sugiere una forma de pensar completamente diferente. Los datos y el cédigo
estan encapsulados juntos en el mismo mundo, divididos en clases.

Cada clase es como una receta que se puede usar cuando quieres crear un objeto util. Puedes
producir tantos objetos como necesites para resolver tu problema.

Cada objeto tiene un conjunto de rasgos (se denominan propiedades o atributos; usaremos ambas palabras
como sindnimos) y es capaz de realizar un conjunto de actividades (que se denominan métodos).

Las recetas pueden modificarse si son inadecuadas para fines especificos y, en efecto, pueden crearse nuevas
clases. Estas nuevas clases heredan propiedades y métodos de los originales, y generalmente agregan algunos
nuevos, creando nuevas herramientas mas especificas.

Los objetos son encarnaciones de las ideas expresadas en clases, como un pastel de queso en tu plato, es
una encarnacién de la idea expresada en una receta impresa en un viejo libro de cocina.

Los objetos interactUan entre si, intercambian datos o activan sus métodos. Una clase construida
adecuadamente (y, por lo tanto, sus objetos) puede proteger los datos sensibles y ocultarlos de modificaciones
no autorizadas.

No existe un limite claro entre los datos y el cddigo: viven como uno solo dentro de los objetos.

Todos estos conceptos no son tan abstractos como pudieras pensar al principio. Por el contrario, todos estan
tomados de experiencias de la vida real y, por lo tanto, son extremadamente Utiles en la programacioén de
computadoras: no crean vida artificial reflejan hechos reales, relaciones y circunstancias.

Jerarquias de clase

La palabra clases tiene muchos significados, pero no todos son compatibles con las ideas que queremos discutir
aqui. La clase que nos concierne es como una categoria, como resultado de similitudes definidas con precisién.

Intentaremos sefialar algunas clases que son buenos ejemplos de este concepto.

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 16:54



14/02/2026 16:54 3/23 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

Vehiculos
Adreos

Vehiculos
Acuiticos

Vehiculos
Terrestres

Vehiculos .
Espaciales
L

Vehicules Vehiculos
Aerodeslizadores
con Ruedas Oruga

Veamos por un momento los vehiculos. Todos los vehiculos existentes (y los que adn no existen) estan
relacionados por una sola caracteristica importante: la capacidad de moverse. Puedes argumentar que
un perro también se mueve; ;Es un perro un vehiculo? No lo es. Tenemos que mejorar la definicién, es decir,
enriquecerla con otros criterios, distinguir los vehiculos de otros seres y crear una conexién mas fuerte.
Consideremos las siguientes circunstancias: los vehiculos son entidades creadas artificialmente que se utilizan
para el transporte, movidos por fuerzas de la naturaleza y dirigidos (conducidos) por humanos.

Segun esta definicién, un perro no es un vehiculo.

La clase Vehiculos es muy amplia. Tenemos que definir clases especializadas. Las clases especializadas son las
subclases. La clase Vehiculos serd una superclase para todas ellas.

Nota: la jerarquia crece de arriba hacia abajo, como raices de arboles, no ramas. La clase mas general
y mas amplia siempre estd en la parte superior (la superclase) mientras que sus descendientes se encuentran
abajo (las subclases).

A estas alturas, probablemente puedas sefialar algunas subclases potenciales para la superclase Vehiculos. Hay
muchas clasificaciones posibles. Elegimos subclases basadas en el medio ambiente y decimos que hay (al
menos) cuatro subclases:

Vehiculos Terrestres.
Vehiculos Acudticos.
Vehiculos Aéreos.

Vehiculos Espaciales.

En este ejemplo, discutiremos solo la primera subclase: Vehiculos Terrestres. Si lo deseas, puedes continuar con
las clases restantes.

Los vehiculos terrestres pueden dividirse alin mas, segin el método con el que impactan el suelo. Entonces,
podemos enumerar:

¢ Vehiculos con ruedas.
¢ Vehiculos oruga.
e Aerodeslizadores.

La figura ilustra la jerarquia que hemos creado.

Ten en cuenta la direccién de las flechas: siempre apuntan a la superclase. La clase de nivel superior es una
excepcién: no tiene su propia superclase.

Otro ejemplo es la jerarquia del reino taxonémico de los animales.
Podemos decir que todos los Animales (nuestra clase de nivel superior) se puede dividir en cinco subclases:

e Mamiferos.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last
update:
03/07/2022
12:13

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1656875606

Reptiles.
Aves.

® Peces.
Anfibios.

Tomaremos el primero para un analisis mas detallado.
Hemos identificado las siguientes subclases:

e Mamiferos Salvajes.
e Mamiferos Domesticados.

R N T T K

Mamiferos Mamiferos
Salvajes Domeslicados

Intenta extender la jerarquia de la forma que quieras y encuentra el lugar adecuado para los humanos.

¢Qué es un objeto?

Una clase (entre otras definiciones) es un conjunto de objetos. Un objeto es un ser perteneciente a una
clase.

Un objeto es una encarnacion de los requisitos, rasgos y cualidades asignados a una clase especifica.
Esto puede sonar simple, pero ten en cuenta las siguientes circunstancias importantes. Las clases forman una
jerarquia.

Esto puede significar que un objeto que pertenece a una clase especifica pertenece a todas las superclases al
mismo tiempo. También puede significar que cualquier objeto perteneciente a una superclase puede no
pertenecer a ninguna de sus subclases.

Por ejemplo: cualquier automdvil personal es un objeto que pertenece a la clase Vehiculos Terrestres. También
significa que el mismo automovil pertenece a todas las superclases de su clase local; por lo tanto, también es
miembro de la clase Vehiculos.

Tu perro (o tu gato) es un objeto incluido en la clase Mamiferos Domesticados, lo que significa explicitamente
que también estd incluido en la clase Animales.

Cada subclase es mads especializada (0 mas especifica) que su superclase. Por el contrario, cada superclase
es mas general (mds abstracta) que cualquiera de sus subclases.

Ten en cuenta que hemos supuesto que una clase solo puede tener una superclase; esto no siempre es cierto,
pero discutiremos este tema mas adelante.

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 16:54



14/02/2026 16:54 5/23 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

Herencia

Definamos uno de los conceptos fundamentales de la programacién de objetos, llamado herencia. Cualquier
objeto vinculado a un nivel especifico de una jerarquia de clases hereda todos los rasgos (asi como los
requisitos y cualidades) definidos dentro de cualquiera de las superclases.

La clase de inicio del objeto puede definir nuevos rasgos (asi como requisitos y cualidades) que seran
heredados por cualquiera de sus superclases.

Herencia

Caracteristica A
Caracteristica B

Caracteristica A Caracteristica C
Caracteristica B Caracteristica D

No deberfas tener ningln problema para hacer coincidir esta regla con ejemplos especificos, ya sea que se
aplique a animales o vehiculos.

¢Qué contiene un objeto?

La programacién orientada a objetos supone que cada objeto existente puede estar equipado con tres
grupos de atributos:

¢ Un objeto tiene un nombre que lo identifica de forma exclusiva dentro de su namespace (aunque
también puede haber algunos objetos anénimos).

¢ Un objeto tiene un conjunto de propiedades individuales que lo hacen original, Unico o sobresaliente
(aunqgue es posible que algunos objetos no tengan propiedades).

¢ Un objeto tiene un conjunto de habilidades para realizar actividades especificas, capaz de
cambiar el objeto en si, o algunos de los otros objetos.

Existe una pista (aunque esto no siempre funciona) que te puede ayudar a identificar cualquiera de las tres
esferas anteriores. Cada vez que se describe un objeto y se usa:

¢ Un sustantivo: probablemente se esta definiendo el nombre del objeto.
¢ Un adjetivo: probablemente se estd definiendo una propiedad del objeto.
e Un verbo: probablemente se estd definiendo una actividad del objeto.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last

gg?;;fz:ozz info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1656875606

12:13

Dos ejemplos deberian servir como un buen ejemplo:

e Un Cadillac rosa pas6 rapidamente.
o Nombre del objeto = Cadillac
o Clase = Vehiculos con ruedas
o Propiedad = Color (rosa)
o Actividad = Pasar (rapidamente)
e Max es un gato grande que duerme todo el dia.
o Nombre del objeto = Max
o Clase = Gato
o Propiedad = Tamafio (Grande)
o Actividad = Dormir (Todo el dia)

Max es un gato grande

que duerme todo el dia. Verbo Duerme

(todo el dia)

Objeto
Sustantivo Max
L. Tamano
propiedades Adjetivo (Grande)
__ Verb Duerme
actividades oo (todo el dia)

Tu primera clase

La programacion orientada a objetos es el arte de definir y expandir clases. Una clase es un modelo de una
parte muy especifica de la realidad, que refleja las propiedades y actividades que se encuentran en el mundo
real.

Las clases definidas al principio son demasiado generales e imprecisas para cubrir el mayor nimero posible de
casos reales.

No hay obstaculo para definir nuevas subclases mas precisas. Heredaran todo de su superclase, por lo que el
trabajo que se utilizd para su creacién no se desperdicia.

La nueva clase puede agregar nuevas propiedades y nuevas actividades y, por lo tanto, puede ser mas util en
aplicaciones especificas. Obviamente, se puede usar como una superclase para cualquier nimero de subclases
recién creadas.

El proceso no necesita tener un final. Puedes crear tantas clases como necesites.

La clase que se define no tiene nada que ver con el objeto: la existencia de una clase no significa que
ninguno de los objetos compatibles se creara automaticamente. La clase en si misma no puede crear un
objeto: debes crearlo tu mismo y Python te permite hacerlo.

Es hora de definir la clase mas simple y crear un objeto. Analiza el siguiente ejemplo:

code python TheSimplestClass:

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 16:54



14/02/2026 16:54 7/23 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

</code>

Hemos definido una clase. La clase es bastante pobre: no contiene propiedades ni actividades. Esta vacia, pero
eso no importa por ahora. Cuanto mas simple sea la clase, mejor para nuestros propdsitos.

La definicion comienza con la palabra clave reservada class. La palabra clave reservada es seguida por
un identificador que le dara nombre a la clase (nota: no lo confundas con el nombre del objeto: estas son
dos cosas diferentes).

A continuacién, se agregan dos puntos (:), como clases, como funciones, forman su propio bloque anidado. El
contenido dentro del bloque define todas las propiedades y actividades de la clase.

La palabra clave reservada pass llena la clase con nada. No contiene ningiin método ni propiedades.

Tu primer objeto

La clase recién definida se convierte en una herramienta que puede crear nuevos objetos. La herramienta debe
usarse explicitamente, bajo demanda.

Imagina que deseas crear un objeto (exactamente uno) de la clase TheSimplestClass.

Para hacer esto, debes asignar una variable para almacenar el objeto recién creado de esa clase y crear un
objeto al mismo tiempo.

Se hace de la siguiente manera:
my first object = TheSimplestClass

Nota:

* El nombre de la clase intenta fingir que es una funcién, ;puedes ver esto? Lo discutiremos pronto.
* El objeto recién creado estd equipado con todo lo que trae la clase. Como esta clase estd completamente
vacia, el objeto también esta vacio.

El acto de crear un objeto de la clase seleccionada también se llama instanciacion (ya que el objeto se
convierte en una instancia de la clase).

Dejemos las clases en paz por un breve momento, ya que ahora diremos algunas palabras sobre pilas. Sabemos
que el concepto de clases y objetos puede no estar completamente claro todavia. No te preocupes, te
explicaremos todo muy pronto.

Puntos Clave

1. Una clase es una idea (mds o menos abstracta) que se puede utilizar para crear varias encarnaciones; una
encarnacion de este tipo se denomina objeto.

2. Cuando una clase se deriva de otra clase, su relacién se denomina herencia. La clase que deriva de la otra
clase se denomina subclase. El segundo lado de esta relacién se denomina superclase. Una forma de presentar
dicha relacién es en un diagrama de herencia, donde:

¢ Las superclases siempre se presentan encima de sus subclases.
¢ Las relaciones entre clases se muestran como flechas dirigidas desde la subclase hacia su superclase.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last
update:
03/07/2022
12:13

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1656875606

3. Los objetos estan equipados con:

¢ Un nombre que los identifica y nos permite distinguirlos.
¢ Un conjunto de propiedades (el conjunto puede estar vacio).
¢ Un conjunto de métodos (también puede estar vacio).

4. Para definir una clase de Python,se necesita usar la palabra clave reservada class. Por ejemplo:

This Is A Class:

5. Para crear un objeto de la clase previamente definida, se necesita usar la clase como si fuera una funcién. Por
ejemplo:

this is an object = This Is A Class
¢Qué es una pila?

Una pila es una estructura desarrollada para almacenar datos de una manera muy especifica.
Imagina una pila de monedas. No puedes poner una moneda en ningun otro lugar sino en la parte superior de la
pila.

Del mismo modo, no puedes sacar una moneda de la pila desde ningln lugar que no sea la parte superior de la
pila. Si deseas obtener la moneda que se encuentra en la parte inferior, debes eliminar todas las monedas de
los niveles superiores.

El nombre alternativo para una pila (pero solo en la terminologia de Tl) es UEPS (LIFO son sus siglas en
inglés).

Es una abreviatura para una descripcién muy clara del comportamiento de la pila: Ultimo en Entrar - Primero
en Salir (Last In - First Out). La moneda que quedé en Gltimo lugar en la pila saldra primero.

Una pila es un objeto con dos operaciones elementales, denominadas convencionalmente push (cuando un
nuevo elemento se coloca en la parte superior) y pop (cuando un elemento existente se retira de la parte
superior).

Las pilas se usan muy a menudo en muchos algoritmos clésicos, y es dificil imaginar la implementacion de
muchas herramientas ampliamente utilizadas sin el uso de pilas.

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 16:54



14/02/2026 16:54 9/23 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

pila

push pop

CIM A st

foNdo w=lp

Implementemos una pila en Python. Esta serad una pila muy simple, y te mostraremos como hacerlo en dos
enfoques independientes: de manera procedimental y orientado a objetos.

La pila: el enfoque procedimental

Primero, debes decidir como almacenar los valores que llegaran a la pila. Sugerimos utilizar el método mas
simple, y emplear una lista para esta tarea. Supongamos que el tamafo de la pila no esta limitado de ninguna
manera. Supongamos también que el Ultimo elemento de la lista almacena el elemento superior.

La pila en si ya esta creada:
stack

Estamos listos para definir una funcién que coloca un valor en la pila. Aqui estan las presuposiciones para
ello:

El nombre para la funcién es push.

La funcién obtiene un pardmetro (este es el valor que se debe colocar en la pila).
La funcién no retorna nada.

La funcién agrega el valor del parametro al final de la pila.

Asi es como lo hemos hecho, echa un vistazo:

push(val
stack.append(val

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last
update:
03/07/2022
12:13

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1656875606

Ahora es tiempo de que una funcidén quite un valor de la pila. Asi es como puedes hacerlo:

El nombre de la funcién es pop.

La funcién no obtiene ningln parametro.

La funcién devuelve el valor tomado de la pila.

La funcién lee el valor de la parte superior de la pila y lo elimina

La funcién esta aqui:

pop
val stack| -
stack]| -
val

Nota: la funcién no verifica si hay algin elemento en la pila.

Armemos todas las piezas juntas para poner la pila en movimiento. El programa completo empuja (push) tres
nimeros a la pila, los saca e imprime sus valores en pantalla.

stack

push(val
stack.append(val

pop
val stack| -
stack]| -
val

push
push
push

pop
pop
pop

El programa muestra el siguiente texto en pantalla:

N

La pila: el enfoque procedimental frente al enfoque orientado a
objetos

La pila procedimental esta lista. Por supuesto, hay algunas debilidades, y la implementacién podria mejorarse
de muchas maneras (aprovechar las excepciones es una buena idea), pero en general la pila esta
completamente implementada, y puedes usarla si lo necesitas.

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 16:54



14/02/2026 16:54 11/23 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

Pero cuanto mas la uses, mas desventajas encontrards. Estas son algunas de ellas:

¢ La variable esencial (la lista de la pila) es altamente vulnerable; cualquiera puede modificarla de forma
incontrolable, destruyendo la pila; esto no significa que se haya hecho de manera maliciosa; por el
contrario, puede ocurrir como resultado de un descuido, por ejemplo, cuando alguien confunde nombres
de variables; imagina que accidentalmente has escrito algo como esto:

stack/[0 0

El funcionamiento de la pila estard completamente desorganizado.

e También puede suceder que un dia necesites mas de una pila; tendras que crear otra lista para el
almacenamiento de la pila, y probablemente otras funciones push y pop.

e También puede suceder que no solo necesites funciones push y pop, pero también algunas otras
funciones; ciertamente podrias implementarlas, pero intenta imaginar qué sucederia si tuvieras docenas
de pilas implementadas por separado.

El enfoque orientado a objetos ofrece soluciones para cada uno de los problemas anteriores. Vamos a
nombrarlos primero:

¢ La capacidad de ocultar (proteger) los valores seleccionados contra el acceso no autorizado se llama
encapsulamiento; no se puede acceder a los valores encapsulados ni modificarlos si deseas
utilizarlos exclusivamente.

¢ Cuando tienes una clase que implementa todos los comportamientos de pila necesarios, puedes producir
tantas pilas como desees; no necesitas copiar ni replicar ninguna parte del cédigo.

¢ La capacidad de enriquecer la pila con nuevas funciones proviene de la herencia; puedes crear una
nueva clase (una subclase) que herede todos los rasgos existentes de la superclase y agregar algunos
nuevos.

pila

Enfoque Procedimental frene al Enfoque Orientado a Objetos

Ahora escribamos una nueva implementacion de pila desde cero. Esta vez, utilizaremos el enfoque orientado a
objetos, que te guiard paso a paso en el mundo de la programacién de objetos.

La pila, el enfoque orientado a objetos

Por supuesto, la idea principal sigue siendo la misma. Usaremos una lista como almacenamiento de la pila. Solo
tenemos que saber como poner la lista en la clase.

Comencemos desde el principio: asi es como comienza la pila orientada a objetos:

Stack:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last
update:
03/07/2022
12:13

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1656875606

Ahora, esperamos dos cosas de la clase:

¢ Queremos que la clase tenga una propiedad como el almacenamiento de la pila, tenemos que
«instalar» una lista dentro de cada objeto de la clase (nota: cada objeto debe tener su propia lista;
la lista no debe compartirse entre diferentes pilas).

e Despues, queremos que la lista esté oculta de la vista de los usuarios de la clase.

¢{Cémo se hace esto?

A diferencia de otros lenguajes de programacién, Python no tiene medios para permitirte declarar una
propiedad como esa.

En su lugar, debes agregar una instruccién especifica. Las propiedades deben agregarse a la clase
manualmente.

¢Cémo garantizar que dicha actividad tiene lugar cada vez que se crea una nueva pila?
Existe una manera simple de hacerlo, tienes que equipar a la clase con una funcién especifica:

¢ Tiene que ser nombrada de forma estricta.
¢ Se invoca implicitamente cuando se crea el nuevo objeto.

Dicha funcién es llamada el constructor, ya que su propdsito general es construir un nuevo objeto. El
constructor debe saber todo acerca de la estructura del objeto y debe realizar todas las inicializaciones
necesarias.

Agreguemos un constructor muy simple a la nueva clase. Echa un vistazo al cédigo:

Stack:
__init (self
"iHola!"

stack object = Stack

Expliqguemos mas a detalle:

¢ El nombre del constructor es siempre _init_.

¢ Tiene que tener al menos un parametro (discutiremos esto mas adelante); el parametro se usa para
representar el objeto recién creado: puedes usar el parametro para manipular el objeto y enriquecerlo
con las propiedades necesarias; haras uso de esto pronto.

¢ Nota: el parametro obligatorio generalmente se denomina self, es solo una sugerencia, pero deberias
seguirla, simplifica el proceso de lectura y comprensién de tu cédigo.

Stack: # Definiendo la clase de la pila.
__init (self): # Definiendo la funcidn del constructor.
“iHola!"

stack object = Stack # Instanciando el objeto.
Aqui estd su salida:
iHola!

Nota: no hay rastro de la invocacién del constructor dentro del cédigo. Ha sido invocado implicita y

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 16:54



14/02/2026 16:54 13/23 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

automaticamente. Hagamos uso de eso ahora.

Cualquier cambio que realices dentro del constructor que modifique el estado del parametro self se vera
reflejado en el objeto recien creado.

Esto significa que puedes agregar cualquier propiedad al objeto y la propiedad permanecera alli hasta que el
objeto termine su vida o la propiedad se elimine explicitamente.

Ahora agreguemos solo una propiedad al nuevo objeto, una lista para la pila. La nombraremos stack list.

Stack:
__init (self
self.stack list

stack object = Stack
len(stack object.stack list

Nota:

e Hemos usado la notacidn punteada, al igual que cuando se invocan métodos. Esta es la manera
general para acceder a las propiedades de un objeto: debes nombrar el objeto, poner un punto (.)
después de el, y especificar el nombre de la propiedad deseada, jno uses paréntesis! No deseas invocar
un método, deseas acceder a una propiedad.

» Si estableces el valor de una propiedad por primera vez (como en el constructor), lo estas creando; a
partir de ese momento, el objeto tiene la propiedad y esta listo para usar su valor.

e Hemos hecho algo mas en el cédigo: hemos intentado acceder a la propiedad stack list desde fuera de la
clase inmediatamente después de que se haya creado el objeto; queremos verificar la longitud actual de
la pila, ¢lo hemos logrado?

Si, por supuesto: el cédigo produce el siguiente resultado:
0

Esto no es lo que queremos de la pila. Nosotros queremos que stack list este escondida del mundo exterior. ;Es
eso posible?

Si, y es simple, pero no muy intuitivo.

Echa un vistazo: hemos agregado dos guiones bajos antes del nombre stack_list, nada mas:

Stack:
__init (self
self. stack list

stack object = Stack
len(stack object. stack list

El cambio invalida el programa.
¢Por qué?

Cuando cualquier componente de la clase tiene un nombre que comienza con dos guiones bajos (_), se
vuelve privado, esto significa que solo se puede acceder desde dentro de la clase.

No puedes verlo desde el mundo exterior. Asi es como Python implementa el concepto de encapsulacion.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last
update:
03/07/2022
12:13

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1656875606

Ejecuta el programa para probar nuestras suposiciones: una excepcién AttributeError debe ser generada.

El enfoque orientado a objetos: una pila desde cero

Ahora es el momento de que las dos funciones (métodos) implementen las operaciones push y pop. Python
supone que una funcién de este tipo deberia estar inmersa dentro del cuerpo de la clase, como el
constructor.

Queremos invocar estas funciones para agregar(push) y quitar(pop) valores de la pila. Esto significa que ambos
deben ser accesibles para el usuario de la clase (en contraste con la lista previamente construida, que esta
oculta para los usuarios de la clase ordinaria).

Tal componente es llamado publico, por ello no puede comenzar su nombre con dos (0 mas) guiones
bajos. Hay un requisito mas el nombre no debe tener mas de un guidn bajo.

Las funciones en si son simples. Echa un vistazo:

Stack:
__init (self
self. stack list

push(self, val
self. stack list.append(val

pop (self
val = self. stack list|-
self. stack list]-
val

stack object = Stack

stack object.push
stack object.push
stack object.push

stack object.pop
stack object.pop
stack object.pop

Sin embargo, hay algo realmente extrafio en el cddigo. Las funciones parecen familiares, pero tienen mas
pardmetros que sus contrapartes procedimentales.

Aqui, ambas funciones tienen un parametro llamado self en la primera posicién de la lista de pardmetros.
¢ES necesario? Si, lo es.

Todos los métodos deben tener este parametro. Desempefia el mismo papel que el primer pardmetro
constructor.

Permite que el método acceda a entidades (propiedades y actividades / métodos) del objeto. No
puedes omitirlo. Cada vez que Python invoca un método, envia implicitamente el objeto actual como el primer
argumento.

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 16:54



14/02/2026 16:54 15/23 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

Esto significa que el método esta obligado a tener al menos un parametro, que Python mismo utiliza,
no tienes ninguna influencia sobre el.

Si tu método no necesita ningln parametro, este debe especificarse de todos modos. Si estd disefiado para
procesar solo un parametro, debes especificar dos, ya que la funcién del primero sigue siendo la misma.

Hay una cosa mas que requiere explicacion: la forma en que se invocan los métodos desde la variable
stack list.

Afortunadamente, es mucho mas simple de lo que parece:

¢ La primera etapa entrega el objeto como un todo - self.

¢ A continuacién, debes llegar a la lista __stack_list = self.__stack_list.

e Con _ stack list lista para ser usada, puedes realizar el tercer y Ultimo paso -
self. _stack list.append(val).

La declaracién de la clase estd completa y se han enumerado todos sus componentes. La clase estd lista para
usarse.

Tener tal clase abre nuevas posibilidades. Por ejemplo, ahora puedes hacer que mas de una pila se comporte de
la misma manera. Cada pila tendra su propia copia de datos privados, pero utilizard el mismo conjunto de
métodos.

Esto es exactamente lo que queremos para este ejemplo.

Analiza el cédigo:

Stack:
__init (self
self. stack list

push(self, val
self. stack list.append(val

pop(self
val = self. stack list|-
self. stack list]-
val

stack object 1 = Stack
stack object 2 = Stack

stack object 1.push
stack object 2.push(stack object 1.pop

stack object 2.pop

Existen dos pilas creadas a partir de la misma clase base. Trabajan independientemente. Puedes crear
mas si quieres.

Ejecuta el cddigo en el editor y observa que sucede. Realiza tus propios experimentos.

Analiza el fragmento de cddigo a continuacién: hemos creado tres objetos de la clase Stack. Después, hemos
hecho malabarismos. Intenta predecir el valor que se muestra en la pantalla.

Stack:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last
update:
03/07/2022
12:13

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1656875606

__init (self
self. stack list

push(self, val
self. stack list.append(val

pop (self
val = self. stack list]|-
self. stack list]-
val

little stack = Stack
another stack = Stack
funny stack = Stack

little stack.push
another stack.push(little stack.pop() +
funny stack.push(another stack.pop -

funny stack.pop

Ahora vamos un poco mas lejos. Vamos a agregar una nueva clase para manejar pilas.

La nueva clase deberia poder evaluar la suma de todos los elementos almacenados actualmente en la
pila.

No queremos modificar la pila previamente definida. Ya es lo suficientemente buena en sus aplicaciones, y no
gueremos que cambie de ninguna manera. Queremos una nueva pila con nuevas capacidades. En otras
palabras, queremos construir una subclase de la ya existente clase Stack.

El primer paso es facil: solo define una nueva subclase que apunte a la clase que se usara como
superclase.

Asi es como se ve:

AddingStack(Stack

La clase aun no define ninglin componente nuevo, pero eso no significa que esté vacia. Obtiene (hereda)
todos los componentes definidos por su superclase, el nombre de la superclase se escribe después de los
dos puntos, después del nombre de la nueva clase.

Esto es lo que queremos de la nueva pila:

¢ Queremos que el método push no solo inserte el valor en la pila, sino que también sume el valor a la
variable sum.

e Queremos que la funcién pop no solo extraiga el valor de la pila, sino que también reste el valor de la
variable sum.

En primer lugar, agreguemos una nueva variable a la clase. Serd una variable privada, al igual que la lista de
pila. No queremos que nadie manipule el valor de la variable sum.

Como ya sabes, el constructor agrega una nueva propiedad a la clase. Ya sabes como hacerlo, pero hay algo
realmente intrigante dentro del constructor. Echa un vistazo:

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 16:54



14/02/2026 16:54 17/23 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

AddingStack(Stack
__init (self
Stack. init (self
self. sum

La segunda linea del cuerpo del constructor crea una propiedad llamada __sum, almacenara el total de todos
los valores de la pila.

Pero la linea anterior se ve diferente. ;Qué hace? ;Es realmente necesaria? Si lo es.

Al contrario de muchos otros lenguajes, Python te obliga a invocar explicitamente el constructor de una
superclase. Omitir este punto tendrd efectos nocivos: el objeto se vera privado de la lista __stack_list. Tal pila
no funcionard correctamente.

Esta es la Unica vez que puedes invocar a cualquiera de los constructores disponibles explicitamente; se puede
hacer dentro del constructor de la superclase.

Ten en cuenta la sintaxis:

¢ Se especifica el nombre de la superclase (esta es la clase cuyo constructor se desea ejecutar).

e Se pone un punto (.) después del nombre.

e Se especifica el nombre del constructor.

¢ Se debe sefialar al objeto (la instancia de la clase) que debe ser inicializado por el constructor; es por eso
que se debe especificar el argumento y utilizar la variable self aqui; recuerda: invocar cualquier
método (incluidos los constructores) desde fuera de la clase nunca requiere colocar el
argumento self en la lista de argumentos, invocar un método desde dentro de la clase exige el uso
explicito del argumento self, y tiene que ser el primero en la lista.

Nota: generalmente es una practica recomendada invocar al constructor de la superclase antes de cualquier
otra inicializacién que desees realizar dentro de la subclase. Esta es la regla que hemos seguido en el cédigo.

En segundo lugar, agreguemos dos métodos. Pero, ;realmente estamos agregandolos? Ya tenemos estos
métodos en la superclase. ;Podemos hacer algo asi?

Si podemos. Significa que vamos a cambiar la funcionalidad de los métodos, no sus nombres. Podemos
decir con mayor precisién que la interfaz (la forma en que se manejan los objetos) de la clase permanece igual
al cambiar la implementacién al mismo tiempo.

Comencemos con la implementacién de la funcién push. Esto es lo que esperamos de la funcién:

e Agregar el valor a la variable __sum.
¢ Agregar el valor a la pila.

Nota: la segunda actividad ya se implementé dentro de la superclase, por lo que podemos usarla. Ademas,
tenemos que usarla, ya que no hay otra forma de acceder a la variable _ stackList.

Asi es como se mira el método push dentro de la subclase:

push(self, val
self. sum += val
Stack.push(self, val

Toma en cuenta la forma en que hemos invocado la implementacién anterior del método push (el disponible en
la superclase):

¢ Tenemos que especificar el nombre de la superclase; esto es necesario para indicar claramente la clase
gue contiene el método, para evitar confundirlo con cualquier otra funcién del mismo nombre.
e Tenemos que especificar el objeto de destino y pasarlo como primer argumento (no se agrega

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last
update:
03/07/2022
12:13

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1656875606

implicitamente a la invocacién en este contexto).

Se dice que el método push ha sido anulado, el mismo nombre que en la superclase ahora representa una
funcionalidad diferente.

Esta es la nueva funcién pop:

pop (self

val Stack.pop(self

self. sum -= val
val

Hasta ahora, hemos definido la variable __sum, pero no hemos proporcionado un método para obtener su valor.
Parece estar escondido. ;Como podemos mostrarlo y que al mismo tiempo que se proteja de modificaciones?

Tenemos que definir un nuevo método. Lo nombraremos get_sum. Su tnica tarea sera devolver el valor
de _sum.

Aqui esta:

get sum(self
self. sum

Entonces, veamos el programa en el editor. El cddigo completo de la clase esta ahi. Podemos ahora verificar su
funcionamiento, y lo hacemos con la ayuda de unas pocas lineas de cddigo adicionales.

Como puedes ver, agregamos cinco valores subsiguientes en la pila, imprimimos su suma y los sacamos todos
de la pila.

Stack:
__init (self
self. stack list

push(self, val
self. stack list.append(val

pop (self
val = self. stack list]-
self. stack list]-
val

AddingStack(Stack
__init (self
Stack. init (self
self. sum

get sum(self
self. sum

push(self, val
self. sum += val
Stack.push(self, val

pop (self

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 16:54



14/02/2026 16:54 19/23 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

val = Stack.pop(self
self. sum -= val
val

stack object = AddingStack

i range
stack object.push(i
stack object.get sum

i range
stack object.pop

Puntos Clave

1. Una pila es un objeto disefiado para almacenar datos utilizando el modelo LIFO. La pila normalmente realiza
al menos dos operaciones, llamadas push() y pop().

2. La implementacién de la pila en un modelo procedimental plantea varios problemas que pueden resolverse
con las técnicas ofrecidas por la POO (Programacién Orientada a Objetos).

3. Un método de clase es en realidad una funcién declarada dentro de la clase y capaz de acceder a todos los
componentes de la clase.

4. La parte de la clase en Python responsable de crear nuevos objetos se llama constructor y se implementa
como un método de nombre __init_.

5. Cada declaracién de método de clase debe contener al menos un pardmetro (siempre el primero)
generalmente denominado self, y es utilizado por los objetos para identificarse a si mismos.

6. Si queremos ocultar alguno de los componentes de una clase del mundo exterior, debemos comenzar su
nombre con __. Estos componentes se denominan privados.

ejercicio
Objetivos

e Mejorar las habilidades del estudiante para definir clases.
e Emplear clases existentes para crear nuevas clases equipadas con nuevas funcionalidades.

Escenario
Recientemente te mostramos cdmo extender las posibilidades de Stack definiendo una nueva clase (es decir,
una subclase) que retiene todos los rasgos heredados y agrega algunos nuevos.

Tu tarea es extender el comportamiento de la clase Stack de tal manera que la clase pueda contar todos los
elementos que son agregados (push) y quitados (pop). Emplea la clase Stack que proporcionamos en el editor.

Sigue las sugerencias:

Introduce una propiedad disefiada para contar las operaciones pop y nombrarla de una manera que garantice

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last
update:
03/07/2022
12:13

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1656875606

gue esté oculta. Inicializala a cero dentro del constructor. Proporciona un método que devuelva el valor
asignado actualmente al contador (némbralo get_counter()).

Stack:
__init (self
self. stk

push(self, val
self. stk.append(val

pop (self
val = self. stk|-
self. stkl-
val

CountingStack(Stack
__init (self

#
# Llena el constructor con acciones apropiadas.
#
get counter(self
#
# Presenta el valor actual del contador al mundo.
#
pop (self
#
# Haz un pop y actualiza el contador.

stk = CountingStack
i range
stk.push(i
stk.pop
stk.get counter

Completa el cédigo en el editor. Ejecltalo para comprobar si tu céddigo da como salida 100.
ejercicio
Objetivos

¢ Mejorar las habilidades del estudiante para definir clases desde cero.
¢ Implementar estructuras de datos estandar como clases.

Escenario

Como ya sabes, una pila es una estructura de datos que realiza el modelo LIFO (Ultimo en entrar, primero en

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 16:54



14/02/2026 16:54 21/23 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

salir). Es facil y ya te has acostumbrado a ello perfectamente.

Probemos algo nuevo ahora. Una cola (queue) es un modelo de datos caracterizado por el término FIFO: primero
en entrar, primero en salir. Nota: una cola (fila) regular que conozcas de las tiendas u oficinas de correos
funciona exactamente de la misma manera: un cliente que llegé primero también es el primero en ser atendido.

Tu tarea es implementar la clase Queue con dos operaciones basicas:

¢ put(elemento), que coloca un elemento al final de la cola.
¢ get(), que toma un elemento del principio de la cola y lo devuelve como resultado (la cola no puede estar

vacia para realizarlo correctamente).
Sigue las sugerencias:

¢ Emplea una lista como tu almacenamiento (como lo hicimos con la pila).
¢ put() debe agregar elementos al principio de la lista, mientras que get() debe eliminar los elementos del

final de la lista.
¢ Define una nueva excepcion llamada QueueError (elige una excepcién de la cual se derivard) y generala
cuando get() intentes operar en una lista vacia.

Completa el cédigo que te proporcionamos en el editor. EjecUtalo para comprobar si tu salida es similar a la
nuestra.

Salida Esperada

1

perro

False

Error de Cola

QueueError(???): # Eligir la clase base para la nueva excepcion.
#
# Escribe cédigo aqui.
#

Queue:

init (self

Escribe cédigo aqui.

44::1:!:44:‘

put(self, elem

#

# Escribe cédigo aqui.
#

get(self

#

# Escribe cédigo aqui.
#

gque = Queue
que.put
que.put(“"perro"
que.put(False

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last

32?57%022 info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1656875606

12:13

i range
que.get

"Error de Cola"
ejercicio
Objetivos

¢ Mejorar las habilidades del estudiante para definir subclases.
e Agregar nueva funcionalidad a una clase existente.

Escenario
Tu tarea es extender ligeramente las capacidades de la clase Queue. Queremos que tenga un método sin
parametros que devuelva True si la cola esta vacia y False de lo contrario.

Completa el cédigo que te proporcionamos en el editor. Ejecitalo para comprobar si genera un resultado similar
al nuestro.

Salida esperada:

1

perro
False

Cola vacia

QueueError(???

Queue:
#
# Codigo del laboratorio anterior.
#
SuperQueue (Queue
#
# Escribe cédigo nuevo aqui.
#

que = SuperQueue
que.put
que.put("perro"
que.put(False
i range
que.isempty
que.get

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 16:54



14/02/2026 16:54 23/23 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

"Cola vacia"

https://edube.org/learn/python-essentials-2-esp/poo-propiedades

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1656875606 :

Last update: 03/07/2022 12:13

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/


https://edube.org/learn/python-essentials-2-esp/poo-propiedades
https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1656875606

	Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos
	Enfoque procedimental frente al enfoque orientado a objetos
	Jerarquías de clase
	¿Qué es un objeto?
	Herencia
	¿Qué contiene un objeto?
	Tu primera clase
	Tu primer objeto
	Puntos Clave
	¿Qué es una pila?
	La pila: el enfoque procedimental
	La pila: el enfoque procedimental frente al enfoque orientado a objetos
	La pila, el enfoque orientado a objetos
	El enfoque orientado a objetos: una pila desde cero
	Puntos Clave
	ejercicio
	Objetivos
	Escenario

	ejercicio
	Objetivos
	Escenario

	ejercicio
	Objetivos
	Escenario



