14/02/2026 17:18 1/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

Modulo 3 (intermedio): Los conceptos basicos del
enfoque orientado a objetos

Demos un paso fuera de la programacién y las computadoras, y analicemos temas de programacion orientada a
objetos.

Casi todos los programas y técnicas que has utilizado hasta ahora pertenecen al estilo de programacién
procedimental. Es cierto que has utilizado algunos objetos incorporados, pero cuando nos referimos a ellos, se
mencionan lo minimo posible.

La programacién procedimental fue el enfoque dominante para el desarrollo de software durante décadas de Tl,
y todavia se usa en la actualidad. Ademas, no va a desaparecer en el futuro, ya que funciona muy bien para
proyectos especificos (en general, no muy complejos y no grandes, pero existen muchas excepciones a esa
regla).

El enfoque orientado a objetos es bastante joven (mucho mas joven que el enfoque procedimental) y es
particularmente Util cuando se aplica a proyectos grandes y complejos llevados a cabo por grandes equipos
formados por muchos desarrolladores.

Este tipo de programacién en un proyecto facilita muchas tareas importantes, por ejemplo, dividir el proyecto
en partes pequenas e independientes y el desarrollo independiente de diferentes elementos del proyecto.

Python es una herramienta universal para la programacion procedimental y orientada a objetos. Se
puede utilizar con éxito en ambos enfoques.

Ademads, puedes crear muchas aplicaciones Utiles, incluso si no se sabe nada sobre clases y objetos, pero debes
tener en cuenta que algunos de los problemas (por ejemplo, el manejo de la interfaz grafica de usuario) puede
requerir un enfoque estricto de objetos.

Afortunadamente, la programacién orientada a objetos es relativamente simple.

CLASS
SEAFOOD 4 NAME
[searcc0 | (8
P .Q' . ° 1 N
- . . * -'
8. T8

[]
d ’ /> . . ATTRIBUTES
[]
[]

METHODS :
SWIM
DIVE

Enfoque procedimental frente al enfoque orientado a objetos

WEIGHT
DIET
TASTE

En el enfoque procedimental, es posible distinguir dos mundos diferentes y completamente separados: el
mundo de los datos y el mundo del cédigo. El mundo de los datos esta poblado con variables de diferentes
tipos, mientras que el mundo del cédigo esta habitado por cddigos agrupados en médulos y funciones.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

Las funciones pueden usar datos, pero no al revés. Ademas, las funciones pueden abusar de los datos, es decir,
usar el valor de manera no autorizada (por ejemplo, cuando la funcién seno recibe el saldo de una cuenta
bancaria como parametro).

Los datos no pueden usar funciones. ;Pero es esto completamente cierto? ;Hay algunos tipos especiales de
datos que puedan usar funciones?

Si, los hay, los llamados métodos. Estas son funciones que se invocan desde dentro de los datos, no junto con
ellos. Si puedes ver esta distincién, has dado el primer paso en la programacién de objetos.

El enfoque orientado a objetos sugiere una forma de pensar completamente diferente. Los datos y el cédigo
estan encapsulados juntos en el mismo mundo, divididos en clases.

Cada clase es como una receta que se puede usar cuando quieres crear un objeto util. Puedes
producir tantos objetos como necesites para resolver tu problema.

Cada objeto tiene un conjunto de rasgos (se denominan propiedades o atributos; usaremos ambas palabras
como sindnimos) y es capaz de realizar un conjunto de actividades (que se denominan métodos).

Las recetas pueden modificarse si son inadecuadas para fines especificos y, en efecto, pueden crearse nuevas
clases. Estas nuevas clases heredan propiedades y métodos de los originales, y generalmente agregan algunos
nuevos, creando nuevas herramientas mas especificas.

Los objetos son encarnaciones de las ideas expresadas en clases, como un pastel de queso en tu plato, es
una encarnacién de la idea expresada en una receta impresa en un viejo libro de cocina.

Los objetos interactUan entre si, intercambian datos o activan sus métodos. Una clase construida
adecuadamente (y, por lo tanto, sus objetos) puede proteger los datos sensibles y ocultarlos de modificaciones
no autorizadas.

No existe un limite claro entre los datos y el cddigo: viven como uno solo dentro de los objetos.

Todos estos conceptos no son tan abstractos como pudieras pensar al principio. Por el contrario, todos estan
tomados de experiencias de la vida real y, por lo tanto, son extremadamente Utiles en la programacioén de
computadoras: no crean vida artificial reflejan hechos reales, relaciones y circunstancias.

Jerarquias de clase

La palabra clases tiene muchos significados, pero no todos son compatibles con las ideas que queremos discutir
aqui. La clase que nos concierne es como una categoria, como resultado de similitudes definidas con precisién.

Intentaremos sefialar algunas clases que son buenos ejemplos de este concepto.

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

14/02/2026 17:18 3/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

Vehiculos
Adreos

Vehiculos
Acuiticos

Vehiculos
Terrestres

Vehiculos .
Espaciales
L

Vehicules Vehiculos
Aerodeslizadores
con Ruedas Oruga

Veamos por un momento los vehiculos. Todos los vehiculos existentes (y los que adn no existen) estan
relacionados por una sola caracteristica importante: la capacidad de moverse. Puedes argumentar que
un perro también se mueve; ;Es un perro un vehiculo? No lo es. Tenemos que mejorar la definicién, es decir,
enriquecerla con otros criterios, distinguir los vehiculos de otros seres y crear una conexién mas fuerte.
Consideremos las siguientes circunstancias: los vehiculos son entidades creadas artificialmente que se utilizan
para el transporte, movidos por fuerzas de la naturaleza y dirigidos (conducidos) por humanos.

Segun esta definicién, un perro no es un vehiculo.

La clase Vehiculos es muy amplia. Tenemos que definir clases especializadas. Las clases especializadas son las
subclases. La clase Vehiculos serd una superclase para todas ellas.

Nota: la jerarquia crece de arriba hacia abajo, como raices de arboles, no ramas. La clase mas general
y mas amplia siempre estd en la parte superior (la superclase) mientras que sus descendientes se encuentran
abajo (las subclases).

A estas alturas, probablemente puedas sefialar algunas subclases potenciales para la superclase Vehiculos. Hay
muchas clasificaciones posibles. Elegimos subclases basadas en el medio ambiente y decimos que hay (al
menos) cuatro subclases:

Vehiculos Terrestres.
Vehiculos Acudticos.
Vehiculos Aéreos.

Vehiculos Espaciales.

En este ejemplo, discutiremos solo la primera subclase: Vehiculos Terrestres. Si lo deseas, puedes continuar con
las clases restantes.

Los vehiculos terrestres pueden dividirse alin mas, segin el método con el que impactan el suelo. Entonces,
podemos enumerar:

¢ Vehiculos con ruedas.
¢ Vehiculos oruga.
e Aerodeslizadores.

La figura ilustra la jerarquia que hemos creado.

Ten en cuenta la direccién de las flechas: siempre apuntan a la superclase. La clase de nivel superior es una
excepcién: no tiene su propia superclase.

Otro ejemplo es la jerarquia del reino taxonémico de los animales.
Podemos decir que todos los Animales (nuestra clase de nivel superior) se puede dividir en cinco subclases:

e Mamiferos.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

Reptiles.
Aves.

® Peces.
Anfibios.

Tomaremos el primero para un analisis mas detallado.
Hemos identificado las siguientes subclases:

e Mamiferos Salvajes.
e Mamiferos Domesticados.

R N T T K

Mamiferos Mamiferos
Salvajes Domeslicados

Intenta extender la jerarquia de la forma que quieras y encuentra el lugar adecuado para los humanos.

¢Qué es un objeto?

Una clase (entre otras definiciones) es un conjunto de objetos. Un objeto es un ser perteneciente a una
clase.

Un objeto es una encarnacion de los requisitos, rasgos y cualidades asignados a una clase especifica.
Esto puede sonar simple, pero ten en cuenta las siguientes circunstancias importantes. Las clases forman una
jerarquia.

Esto puede significar que un objeto que pertenece a una clase especifica pertenece a todas las superclases al
mismo tiempo. También puede significar que cualquier objeto perteneciente a una superclase puede no
pertenecer a ninguna de sus subclases.

Por ejemplo: cualquier automdvil personal es un objeto que pertenece a la clase Vehiculos Terrestres. También
significa que el mismo automovil pertenece a todas las superclases de su clase local; por lo tanto, también es
miembro de la clase Vehiculos.

Tu perro (o tu gato) es un objeto incluido en la clase Mamiferos Domesticados, lo que significa explicitamente
que también estd incluido en la clase Animales.

Cada subclase es mads especializada (0 mas especifica) que su superclase. Por el contrario, cada superclase
es mas general (mds abstracta) que cualquiera de sus subclases.

Ten en cuenta que hemos supuesto que una clase solo puede tener una superclase; esto no siempre es cierto,
pero discutiremos este tema mas adelante.

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

14/02/2026 17:18 5/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

Herencia

Definamos uno de los conceptos fundamentales de la programacién de objetos, llamado herencia. Cualquier
objeto vinculado a un nivel especifico de una jerarquia de clases hereda todos los rasgos (asi como los
requisitos y cualidades) definidos dentro de cualquiera de las superclases.

La clase de inicio del objeto puede definir nuevos rasgos (asi como requisitos y cualidades) que seran
heredados por cualquiera de sus superclases.

Herencia

Caracteristica A
Caracteristica B

Caracteristica A Caracteristica C
Caracteristica B Caracteristica D

No deberfas tener ningln problema para hacer coincidir esta regla con ejemplos especificos, ya sea que se
aplique a animales o vehiculos.

¢Qué contiene un objeto?

La programacién orientada a objetos supone que cada objeto existente puede estar equipado con tres
grupos de atributos:

¢ Un objeto tiene un nombre que lo identifica de forma exclusiva dentro de su namespace (aunque
también puede haber algunos objetos anénimos).

¢ Un objeto tiene un conjunto de propiedades individuales que lo hacen original, Unico o sobresaliente
(aunqgue es posible que algunos objetos no tengan propiedades).

¢ Un objeto tiene un conjunto de habilidades para realizar actividades especificas, capaz de
cambiar el objeto en si, o algunos de los otros objetos.

Existe una pista (aunque esto no siempre funciona) que te puede ayudar a identificar cualquiera de las tres
esferas anteriores. Cada vez que se describe un objeto y se usa:

¢ Un sustantivo: probablemente se esta definiendo el nombre del objeto.
¢ Un adjetivo: probablemente se estd definiendo una propiedad del objeto.
e Un verbo: probablemente se estd definiendo una actividad del objeto.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last

gg?;;fz:ozz info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

12:01

Dos ejemplos deberian servir como un buen ejemplo:

e Un Cadillac rosa pas6 rapidamente.
o Nombre del objeto = Cadillac
o Clase = Vehiculos con ruedas
o Propiedad = Color (rosa)
o Actividad = Pasar (rapidamente)
e Max es un gato grande que duerme todo el dia.
o Nombre del objeto = Max
o Clase = Gato
o Propiedad = Tamafio (Grande)
o Actividad = Dormir (Todo el dia)

Max es un gato grande

que duerme todo el dia. Verbo Duerme

(todo el dia)

Objeto
Sustantivo Max
L. Tamano
propiedades Adjetivo (Grande)
__ Verb Duerme
actividades oo (todo el dia)

Tu primera clase

La programacion orientada a objetos es el arte de definir y expandir clases. Una clase es un modelo de una
parte muy especifica de la realidad, que refleja las propiedades y actividades que se encuentran en el mundo
real.

Las clases definidas al principio son demasiado generales e imprecisas para cubrir el mayor nimero posible de
casos reales.

No hay obstaculo para definir nuevas subclases mas precisas. Heredaran todo de su superclase, por lo que el
trabajo que se utilizd para su creacién no se desperdicia.

La nueva clase puede agregar nuevas propiedades y nuevas actividades y, por lo tanto, puede ser mas util en
aplicaciones especificas. Obviamente, se puede usar como una superclase para cualquier nimero de subclases
recién creadas.

El proceso no necesita tener un final. Puedes crear tantas clases como necesites.

La clase que se define no tiene nada que ver con el objeto: la existencia de una clase no significa que
ninguno de los objetos compatibles se creara automaticamente. La clase en si misma no puede crear un
objeto: debes crearlo tu mismo y Python te permite hacerlo.

Es hora de definir la clase mas simple y crear un objeto. Analiza el siguiente ejemplo:

code python TheSimplestClass:

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

14/02/2026 17:18 7/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

</code>

Hemos definido una clase. La clase es bastante pobre: no contiene propiedades ni actividades. Esta vacia, pero
eso no importa por ahora. Cuanto mas simple sea la clase, mejor para nuestros propdsitos.

La definicion comienza con la palabra clave reservada class. La palabra clave reservada es seguida por
un identificador que le dara nombre a la clase (nota: no lo confundas con el nombre del objeto: estas son
dos cosas diferentes).

A continuacién, se agregan dos puntos (:), como clases, como funciones, forman su propio bloque anidado. El
contenido dentro del bloque define todas las propiedades y actividades de la clase.

La palabra clave reservada pass llena la clase con nada. No contiene ningiin método ni propiedades.

Tu primer objeto

La clase recién definida se convierte en una herramienta que puede crear nuevos objetos. La herramienta debe
usarse explicitamente, bajo demanda.

Imagina que deseas crear un objeto (exactamente uno) de la clase TheSimplestClass.

Para hacer esto, debes asignar una variable para almacenar el objeto recién creado de esa clase y crear un
objeto al mismo tiempo.

Se hace de la siguiente manera:
my first object = TheSimplestClass

Nota:

* El nombre de la clase intenta fingir que es una funcién, ;puedes ver esto? Lo discutiremos pronto.
* El objeto recién creado estd equipado con todo lo que trae la clase. Como esta clase estd completamente
vacia, el objeto también esta vacio.

El acto de crear un objeto de la clase seleccionada también se llama instanciacion (ya que el objeto se
convierte en una instancia de la clase).

Dejemos las clases en paz por un breve momento, ya que ahora diremos algunas palabras sobre pilas. Sabemos
que el concepto de clases y objetos puede no estar completamente claro todavia. No te preocupes, te
explicaremos todo muy pronto.

Puntos Clave

1. Una clase es una idea (mds o menos abstracta) que se puede utilizar para crear varias encarnaciones; una
encarnacion de este tipo se denomina objeto.

2. Cuando una clase se deriva de otra clase, su relacién se denomina herencia. La clase que deriva de la otra
clase se denomina subclase. El segundo lado de esta relacién se denomina superclase. Una forma de presentar
dicha relacién es en un diagrama de herencia, donde:

¢ Las superclases siempre se presentan encima de sus subclases.
¢ Las relaciones entre clases se muestran como flechas dirigidas desde la subclase hacia su superclase.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

3. Los objetos estan equipados con:

¢ Un nombre que los identifica y nos permite distinguirlos.
¢ Un conjunto de propiedades (el conjunto puede estar vacio).
¢ Un conjunto de métodos (también puede estar vacio).

4. Para definir una clase de Python,se necesita usar la palabra clave reservada class. Por ejemplo:

This Is A Class:

5. Para crear un objeto de la clase previamente definida, se necesita usar la clase como si fuera una funcién. Por
ejemplo:

this is an object = This Is A Class
¢Qué es una pila?

Una pila es una estructura desarrollada para almacenar datos de una manera muy especifica.
Imagina una pila de monedas. No puedes poner una moneda en ningun otro lugar sino en la parte superior de la
pila.

Del mismo modo, no puedes sacar una moneda de la pila desde ningln lugar que no sea la parte superior de la
pila. Si deseas obtener la moneda que se encuentra en la parte inferior, debes eliminar todas las monedas de
los niveles superiores.

El nombre alternativo para una pila (pero solo en la terminologia de Tl) es UEPS (LIFO son sus siglas en
inglés).

Es una abreviatura para una descripcién muy clara del comportamiento de la pila: Ultimo en Entrar - Primero
en Salir (Last In - First Out). La moneda que quedé en Gltimo lugar en la pila saldra primero.

Una pila es un objeto con dos operaciones elementales, denominadas convencionalmente push (cuando un
nuevo elemento se coloca en la parte superior) y pop (cuando un elemento existente se retira de la parte
superior).

Las pilas se usan muy a menudo en muchos algoritmos clésicos, y es dificil imaginar la implementacion de
muchas herramientas ampliamente utilizadas sin el uso de pilas.

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

14/02/2026 17:18 9/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

pila

push pop

CIM A st

foNdo w=lp

Implementemos una pila en Python. Esta serad una pila muy simple, y te mostraremos como hacerlo en dos
enfoques independientes: de manera procedimental y orientado a objetos.

La pila: el enfoque procedimental

Primero, debes decidir como almacenar los valores que llegaran a la pila. Sugerimos utilizar el método mas
simple, y emplear una lista para esta tarea. Supongamos que el tamafo de la pila no esta limitado de ninguna
manera. Supongamos también que el Ultimo elemento de la lista almacena el elemento superior.

La pila en si ya esta creada:
stack

Estamos listos para definir una funcién que coloca un valor en la pila. Aqui estan las presuposiciones para
ello:

El nombre para la funcién es push.

La funcién obtiene un pardmetro (este es el valor que se debe colocar en la pila).
La funcién no retorna nada.

La funcién agrega el valor del parametro al final de la pila.

Asi es como lo hemos hecho, echa un vistazo:

push(val
stack.append(val

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

Ahora es tiempo de que una funcidén quite un valor de la pila. Asi es como puedes hacerlo:

El nombre de la funcién es pop.

La funcién no obtiene ningln parametro.

La funcién devuelve el valor tomado de la pila.

La funcién lee el valor de la parte superior de la pila y lo elimina

La funcién esta aqui:

pop
val stack| -
stack]| -
val

Nota: la funcién no verifica si hay algin elemento en la pila.

Armemos todas las piezas juntas para poner la pila en movimiento. El programa completo empuja (push) tres
nimeros a la pila, los saca e imprime sus valores en pantalla.

stack

push(val
stack.append(val

pop
val stack| -
stack]| -
val

push
push
push

pop
pop
pop

El programa muestra el siguiente texto en pantalla:

N

La pila: el enfoque procedimental frente al enfoque orientado a
objetos

La pila procedimental esta lista. Por supuesto, hay algunas debilidades, y la implementacién podria mejorarse
de muchas maneras (aprovechar las excepciones es una buena idea), pero en general la pila esta
completamente implementada, y puedes usarla si lo necesitas.

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

14/02/2026 17:18 11/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

Pero cuanto mas la uses, mas desventajas encontrards. Estas son algunas de ellas:

¢ La variable esencial (la lista de la pila) es altamente vulnerable; cualquiera puede modificarla de forma
incontrolable, destruyendo la pila; esto no significa que se haya hecho de manera maliciosa; por el
contrario, puede ocurrir como resultado de un descuido, por ejemplo, cuando alguien confunde nombres
de variables; imagina que accidentalmente has escrito algo como esto:

stack/[0 0

El funcionamiento de la pila estard completamente desorganizado.

e También puede suceder que un dia necesites mas de una pila; tendras que crear otra lista para el
almacenamiento de la pila, y probablemente otras funciones push y pop.

e También puede suceder que no solo necesites funciones push y pop, pero también algunas otras
funciones; ciertamente podrias implementarlas, pero intenta imaginar qué sucederia si tuvieras docenas
de pilas implementadas por separado.

El enfoque orientado a objetos ofrece soluciones para cada uno de los problemas anteriores. Vamos a
nombrarlos primero:

¢ La capacidad de ocultar (proteger) los valores seleccionados contra el acceso no autorizado se llama
encapsulamiento; no se puede acceder a los valores encapsulados ni modificarlos si deseas
utilizarlos exclusivamente.

¢ Cuando tienes una clase que implementa todos los comportamientos de pila necesarios, puedes producir
tantas pilas como desees; no necesitas copiar ni replicar ninguna parte del cédigo.

¢ La capacidad de enriquecer la pila con nuevas funciones proviene de la herencia; puedes crear una
nueva clase (una subclase) que herede todos los rasgos existentes de la superclase y agregar algunos
nuevos.

pila

Enfoque Procedimental frene al Enfoque Orientado a Objetos

Ahora escribamos una nueva implementacion de pila desde cero. Esta vez, utilizaremos el enfoque orientado a
objetos, que te guiard paso a paso en el mundo de la programacién de objetos.

La pila, el enfoque orientado a objetos

Por supuesto, la idea principal sigue siendo la misma. Usaremos una lista como almacenamiento de la pila. Solo
tenemos que saber como poner la lista en la clase.

Comencemos desde el principio: asi es como comienza la pila orientada a objetos:

Stack:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

Ahora, esperamos dos cosas de la clase:

¢ Queremos que la clase tenga una propiedad como el almacenamiento de la pila, tenemos que
«instalar» una lista dentro de cada objeto de la clase (nota: cada objeto debe tener su propia lista;
la lista no debe compartirse entre diferentes pilas).

e Despues, queremos que la lista esté oculta de la vista de los usuarios de la clase.

¢{Cémo se hace esto?

A diferencia de otros lenguajes de programacién, Python no tiene medios para permitirte declarar una
propiedad como esa.

En su lugar, debes agregar una instruccién especifica. Las propiedades deben agregarse a la clase
manualmente.

¢Cémo garantizar que dicha actividad tiene lugar cada vez que se crea una nueva pila?
Existe una manera simple de hacerlo, tienes que equipar a la clase con una funcién especifica:

¢ Tiene que ser nombrada de forma estricta.
¢ Se invoca implicitamente cuando se crea el nuevo objeto.

Dicha funcién es llamada el constructor, ya que su propdsito general es construir un nuevo objeto. El
constructor debe saber todo acerca de la estructura del objeto y debe realizar todas las inicializaciones
necesarias.

Agreguemos un constructor muy simple a la nueva clase. Echa un vistazo al cédigo:

Stack:
__init (self
"iHola!"

stack object = Stack

Expliqguemos mas a detalle:

¢ El nombre del constructor es siempre _init_.

¢ Tiene que tener al menos un parametro (discutiremos esto mas adelante); el parametro se usa para
representar el objeto recién creado: puedes usar el parametro para manipular el objeto y enriquecerlo
con las propiedades necesarias; haras uso de esto pronto.

¢ Nota: el parametro obligatorio generalmente se denomina self, es solo una sugerencia, pero deberias
seguirla, simplifica el proceso de lectura y comprensién de tu cédigo.

Stack: # Definiendo la clase de la pila.
__init (self): # Definiendo la funcidn del constructor.
“iHola!"

stack object = Stack # Instanciando el objeto.
Aqui estd su salida:
iHola!

Nota: no hay rastro de la invocacién del constructor dentro del cédigo. Ha sido invocado implicita y

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

14/02/2026 17:18 13/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

automaticamente. Hagamos uso de eso ahora.

Cualquier cambio que realices dentro del constructor que modifique el estado del parametro self se vera
reflejado en el objeto recien creado.

Esto significa que puedes agregar cualquier propiedad al objeto y la propiedad permanecera alli hasta que el
objeto termine su vida o la propiedad se elimine explicitamente.

Ahora agreguemos solo una propiedad al nuevo objeto, una lista para la pila. La nombraremos stack list.

Stack:
__init (self
self.stack list

stack object = Stack
len(stack object.stack list

Nota:

e Hemos usado la notacidn punteada, al igual que cuando se invocan métodos. Esta es la manera
general para acceder a las propiedades de un objeto: debes nombrar el objeto, poner un punto (.)
después de el, y especificar el nombre de la propiedad deseada, jno uses paréntesis! No deseas invocar
un método, deseas acceder a una propiedad.

» Si estableces el valor de una propiedad por primera vez (como en el constructor), lo estas creando; a
partir de ese momento, el objeto tiene la propiedad y esta listo para usar su valor.

e Hemos hecho algo mas en el cédigo: hemos intentado acceder a la propiedad stack list desde fuera de la
clase inmediatamente después de que se haya creado el objeto; queremos verificar la longitud actual de
la pila, ¢lo hemos logrado?

Si, por supuesto: el cédigo produce el siguiente resultado:
0

Esto no es lo que queremos de la pila. Nosotros queremos que stack list este escondida del mundo exterior. ;Es
eso posible?

Si, y es simple, pero no muy intuitivo.

Echa un vistazo: hemos agregado dos guiones bajos antes del nombre stack_list, nada mas:

Stack:
__init (self
self. stack list

stack object = Stack
len(stack object. stack list

El cambio invalida el programa.
¢Por qué?

Cuando cualquier componente de la clase tiene un nombre que comienza con dos guiones bajos (_), se
vuelve privado, esto significa que solo se puede acceder desde dentro de la clase.

No puedes verlo desde el mundo exterior. Asi es como Python implementa el concepto de encapsulacion.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

Ejecuta el programa para probar nuestras suposiciones: una excepcién AttributeError debe ser generada.

El enfoque orientado a objetos: una pila desde cero

Ahora es el momento de que las dos funciones (métodos) implementen las operaciones push y pop. Python
supone que una funcién de este tipo deberia estar inmersa dentro del cuerpo de la clase, como el
constructor.

Queremos invocar estas funciones para agregar(push) y quitar(pop) valores de la pila. Esto significa que ambos
deben ser accesibles para el usuario de la clase (en contraste con la lista previamente construida, que esta
oculta para los usuarios de la clase ordinaria).

Tal componente es llamado publico, por ello no puede comenzar su nombre con dos (0 mas) guiones
bajos. Hay un requisito mas el nombre no debe tener mas de un guidn bajo.

Las funciones en si son simples. Echa un vistazo:

Stack:
__init (self
self. stack list

push(self, val
self. stack list.append(val

pop (self
val = self. stack list|-
self. stack list]-
val

stack object = Stack

stack object.push
stack object.push
stack object.push

stack object.pop
stack object.pop
stack object.pop

Sin embargo, hay algo realmente extrafio en el cddigo. Las funciones parecen familiares, pero tienen mas
pardmetros que sus contrapartes procedimentales.

Aqui, ambas funciones tienen un parametro llamado self en la primera posicién de la lista de pardmetros.
¢ES necesario? Si, lo es.

Todos los métodos deben tener este parametro. Desempefia el mismo papel que el primer pardmetro
constructor.

Permite que el método acceda a entidades (propiedades y actividades / métodos) del objeto. No
puedes omitirlo. Cada vez que Python invoca un método, envia implicitamente el objeto actual como el primer
argumento.

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

14/02/2026 17:18 15/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

Esto significa que el método esta obligado a tener al menos un parametro, que Python mismo utiliza,
no tienes ninguna influencia sobre el.

Si tu método no necesita ningln parametro, este debe especificarse de todos modos. Si estd disefiado para
procesar solo un parametro, debes especificar dos, ya que la funcién del primero sigue siendo la misma.

Hay una cosa mas que requiere explicacion: la forma en que se invocan los métodos desde la variable
stack list.

Afortunadamente, es mucho mas simple de lo que parece:

¢ La primera etapa entrega el objeto como un todo - self.

¢ A continuacién, debes llegar a la lista __stack_list = self.__stack_list.

e Con _ stack list lista para ser usada, puedes realizar el tercer y Ultimo paso -
self. _stack list.append(val).

La declaracién de la clase estd completa y se han enumerado todos sus componentes. La clase estd lista para
usarse.

Tener tal clase abre nuevas posibilidades. Por ejemplo, ahora puedes hacer que mas de una pila se comporte de
la misma manera. Cada pila tendra su propia copia de datos privados, pero utilizard el mismo conjunto de
métodos.

Esto es exactamente lo que queremos para este ejemplo.

Analiza el cédigo:

Stack:
__init (self
self. stack list

push(self, val
self. stack list.append(val

pop(self
val = self. stack list|-
self. stack list]-
val

stack object 1 = Stack
stack object 2 = Stack

stack object 1.push
stack object 2.push(stack object 1.pop

stack object 2.pop

Existen dos pilas creadas a partir de la misma clase base. Trabajan independientemente. Puedes crear
mas si quieres.

Ejecuta el cddigo en el editor y observa que sucede. Realiza tus propios experimentos.

Analiza el fragmento de cddigo a continuacién: hemos creado tres objetos de la clase Stack. Después, hemos
hecho malabarismos. Intenta predecir el valor que se muestra en la pantalla.

Stack:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

__init (self
self. stack list

push(self, val
self. stack list.append(val

pop (self
val = self. stack list]|-
self. stack list]-
val

little stack = Stack
another stack = Stack
funny stack = Stack

little stack.push
another stack.push(little stack.pop() +
funny stack.push(another stack.pop -

funny stack.pop

Ahora vamos un poco mas lejos. Vamos a agregar una nueva clase para manejar pilas.

La nueva clase deberia poder evaluar la suma de todos los elementos almacenados actualmente en la
pila.

No queremos modificar la pila previamente definida. Ya es lo suficientemente buena en sus aplicaciones, y no
gueremos que cambie de ninguna manera. Queremos una nueva pila con nuevas capacidades. En otras
palabras, queremos construir una subclase de la ya existente clase Stack.

El primer paso es facil: solo define una nueva subclase que apunte a la clase que se usara como
superclase.

Asi es como se ve:

AddingStack(Stack

La clase aun no define ninglin componente nuevo, pero eso no significa que esté vacia. Obtiene (hereda)
todos los componentes definidos por su superclase, el nombre de la superclase se escribe después de los
dos puntos, después del nombre de la nueva clase.

Esto es lo que queremos de la nueva pila:

¢ Queremos que el método push no solo inserte el valor en la pila, sino que también sume el valor a la
variable sum.

e Queremos que la funcién pop no solo extraiga el valor de la pila, sino que también reste el valor de la
variable sum.

En primer lugar, agreguemos una nueva variable a la clase. Serd una variable privada, al igual que la lista de
pila. No queremos que nadie manipule el valor de la variable sum.

Como ya sabes, el constructor agrega una nueva propiedad a la clase. Ya sabes como hacerlo, pero hay algo
realmente intrigante dentro del constructor. Echa un vistazo:

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

14/02/2026 17:18 17/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

AddingStack(Stack
__init (self
Stack. init (self
self. sum

La segunda linea del cuerpo del constructor crea una propiedad llamada __sum, almacenara el total de todos
los valores de la pila.

Pero la linea anterior se ve diferente. ;Qué hace? ;Es realmente necesaria? Si lo es.

Al contrario de muchos otros lenguajes, Python te obliga a invocar explicitamente el constructor de una
superclase. Omitir este punto tendrd efectos nocivos: el objeto se vera privado de la lista __stack_list. Tal pila
no funcionard correctamente.

Esta es la Unica vez que puedes invocar a cualquiera de los constructores disponibles explicitamente; se puede
hacer dentro del constructor de la superclase.

Ten en cuenta la sintaxis:

¢ Se especifica el nombre de la superclase (esta es la clase cuyo constructor se desea ejecutar).

e Se pone un punto (.) después del nombre.

e Se especifica el nombre del constructor.

¢ Se debe sefialar al objeto (la instancia de la clase) que debe ser inicializado por el constructor; es por eso
que se debe especificar el argumento y utilizar la variable self aqui; recuerda: invocar cualquier
método (incluidos los constructores) desde fuera de la clase nunca requiere colocar el
argumento self en la lista de argumentos, invocar un método desde dentro de la clase exige el uso
explicito del argumento self, y tiene que ser el primero en la lista.

Nota: generalmente es una practica recomendada invocar al constructor de la superclase antes de cualquier
otra inicializacién que desees realizar dentro de la subclase. Esta es la regla que hemos seguido en el cédigo.

En segundo lugar, agreguemos dos métodos. Pero, ;realmente estamos agregandolos? Ya tenemos estos
métodos en la superclase. ;Podemos hacer algo asi?

Si podemos. Significa que vamos a cambiar la funcionalidad de los métodos, no sus nombres. Podemos
decir con mayor precisién que la interfaz (la forma en que se manejan los objetos) de la clase permanece igual
al cambiar la implementacién al mismo tiempo.

Comencemos con la implementacién de la funcién push. Esto es lo que esperamos de la funcién:

e Agregar el valor a la variable __sum.
¢ Agregar el valor a la pila.

Nota: la segunda actividad ya se implementé dentro de la superclase, por lo que podemos usarla. Ademas,
tenemos que usarla, ya que no hay otra forma de acceder a la variable _ stackList.

Asi es como se mira el método push dentro de la subclase:

push(self, val
self. sum += val
Stack.push(self, val

Toma en cuenta la forma en que hemos invocado la implementacién anterior del método push (el disponible en
la superclase):

¢ Tenemos que especificar el nombre de la superclase; esto es necesario para indicar claramente la clase
gue contiene el método, para evitar confundirlo con cualquier otra funcién del mismo nombre.
e Tenemos que especificar el objeto de destino y pasarlo como primer argumento (no se agrega

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

implicitamente a la invocacién en este contexto).

Se dice que el método push ha sido anulado, el mismo nombre que en la superclase ahora representa una
funcionalidad diferente.

Esta es la nueva funcién pop:

pop (self

val Stack.pop(self

self. sum -= val
val

Hasta ahora, hemos definido la variable __sum, pero no hemos proporcionado un método para obtener su valor.
Parece estar escondido. ;Como podemos mostrarlo y que al mismo tiempo que se proteja de modificaciones?

Tenemos que definir un nuevo método. Lo nombraremos get_sum. Su tnica tarea sera devolver el valor
de _sum.

Aqui esta:

get sum(self
self. sum

Entonces, veamos el programa en el editor. El cddigo completo de la clase esta ahi. Podemos ahora verificar su
funcionamiento, y lo hacemos con la ayuda de unas pocas lineas de cddigo adicionales.

Como puedes ver, agregamos cinco valores subsiguientes en la pila, imprimimos su suma y los sacamos todos
de la pila.

Stack:
__init (self
self. stack list

push(self, val
self. stack list.append(val

pop (self
val = self. stack list]-
self. stack list]-
val

AddingStack(Stack
__init (self
Stack. init (self
self. sum

get sum(self
self. sum

push(self, val
self. sum += val
Stack.push(self, val

pop (self

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

14/02/2026 17:18 19/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

val = Stack.pop(self
self. sum -= val
val

stack object = AddingStack

i range
stack object.push(i
stack object.get sum

i range
stack object.pop

Puntos Clave

1. Una pila es un objeto disefiado para almacenar datos utilizando el modelo LIFO. La pila normalmente realiza
al menos dos operaciones, llamadas push() y pop().

2. La implementacién de la pila en un modelo procedimental plantea varios problemas que pueden resolverse
con las técnicas ofrecidas por la POO (Programacién Orientada a Objetos).

3. Un método de clase es en realidad una funcién declarada dentro de la clase y capaz de acceder a todos los
componentes de la clase.

4. La parte de la clase en Python responsable de crear nuevos objetos se llama constructor y se implementa
como un método de nombre __init_.

5. Cada declaracién de método de clase debe contener al menos un pardmetro (siempre el primero)
generalmente denominado self, y es utilizado por los objetos para identificarse a si mismos.

6. Si queremos ocultar alguno de los componentes de una clase del mundo exterior, debemos comenzar su
nombre con __. Estos componentes se denominan privados.

ejercicio
Objetivos

e Mejorar las habilidades del estudiante para definir clases.
e Emplear clases existentes para crear nuevas clases equipadas con nuevas funcionalidades.

Escenario
Recientemente te mostramos cdmo extender las posibilidades de Stack definiendo una nueva clase (es decir,
una subclase) que retiene todos los rasgos heredados y agrega algunos nuevos.

Tu tarea es extender el comportamiento de la clase Stack de tal manera que la clase pueda contar todos los
elementos que son agregados (push) y quitados (pop). Emplea la clase Stack que proporcionamos en el editor.

Sigue las sugerencias:

Introduce una propiedad disefiada para contar las operaciones pop y nombrarla de una manera que garantice

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

gue esté oculta. Inicializala a cero dentro del constructor. Proporciona un método que devuelva el valor
asignado actualmente al contador (némbralo get_counter()).

Stack:
__init (self
self. stk

push(self, val
self. stk.append(val

pop (self
val = self. stk|-
self. stkl-
val

CountingStack(Stack
__init (self

#
Llena el constructor con acciones apropiadas.
#
get counter(self
#
Presenta el valor actual del contador al mundo.
#
pop (self
#
Haz un pop y actualiza el contador.

stk = CountingStack
i range
stk.push(i
stk.pop
stk.get counter

Completa el cédigo en el editor. Ejecltalo para comprobar si tu céddigo da como salida 100.
ejercicio
Objetivos

¢ Mejorar las habilidades del estudiante para definir clases desde cero.
¢ Implementar estructuras de datos estandar como clases.

Escenario

Como ya sabes, una pila es una estructura de datos que realiza el modelo LIFO (Ultimo en entrar, primero en

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

14/02/2026 17:18 21/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

salir). Es facil y ya te has acostumbrado a ello perfectamente.

Probemos algo nuevo ahora. Una cola (queue) es un modelo de datos caracterizado por el término FIFO: primero
en entrar, primero en salir. Nota: una cola (fila) regular que conozcas de las tiendas u oficinas de correos
funciona exactamente de la misma manera: un cliente que llegé primero también es el primero en ser atendido.

Tu tarea es implementar la clase Queue con dos operaciones basicas:

¢ put(elemento), que coloca un elemento al final de la cola.
¢ get(), que toma un elemento del principio de la cola y lo devuelve como resultado (la cola no puede estar

vacia para realizarlo correctamente).
Sigue las sugerencias:

¢ Emplea una lista como tu almacenamiento (como lo hicimos con la pila).
¢ put() debe agregar elementos al principio de la lista, mientras que get() debe eliminar los elementos del

final de la lista.
¢ Define una nueva excepcion llamada QueueError (elige una excepcién de la cual se derivard) y generala
cuando get() intentes operar en una lista vacia.

Completa el cédigo que te proporcionamos en el editor. EjecUtalo para comprobar si tu salida es similar a la
nuestra.

Salida Esperada

1

perro

False

Error de Cola

QueueError(???): # Eligir la clase base para la nueva excepcion.
#
Escribe cédigo aqui.
#

Queue:

init (self

Escribe cédigo aqui.

44::1:!:44:‘

put(self, elem

#

Escribe cédigo aqui.
#

get(self

#

Escribe cédigo aqui.
#

gque = Queue
que.put
que.put(“"perro"
que.put(False

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last

32?57%022 info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

12:01

i range
que.get

"Error de Cola"
ejercicio
Objetivos

¢ Mejorar las habilidades del estudiante para definir subclases.
e Agregar nueva funcionalidad a una clase existente.

Escenario
Tu tarea es extender ligeramente las capacidades de la clase Queue. Queremos que tenga un método sin
parametros que devuelva True si la cola esta vacia y False de lo contrario.

Completa el cédigo que te proporcionamos en el editor. Ejecitalo para comprobar si genera un resultado similar
al nuestro.

Salida esperada:

1

perro
False

Cola vacia

QueueError(???

Queue:
#
Codigo del laboratorio anterior.
#
SuperQueue (Queue
#
Escribe cédigo nuevo aqui.
#

que = SuperQueue
que.put
que.put("perro"
que.put(False
i range
que.isempty
que.get

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

14/02/2026 17:18 23/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

"Cola vacia"

Variables de instancia

En general, una clase puede equiparse con dos tipos diferentes de datos para formar las propiedades de una
clase. Ya viste uno de ellos cuando estabamos estudiando pilas.

Este tipo de propiedad existe solo cuando se crea explicitamente y se agrega a un objeto. Como ya sabes, esto
se puede hacer durante la inicializacién del objeto, realizada por el constructor.

Ademads, se puede hacer en cualquier momento de la vida del objeto. Es importante mencionar también que
cualquier propiedad existente se puede eliminar en cualquier momento.

Tal enfoque tiene algunas consecuencias importantes:

¢ Diferentes objetos de la misma clase pueden poseer diferentes conjuntos de propiedades.

¢ Debe haber una manera de verificar con seguridad si un objeto especifico posee la propiedad
gue deseas utilizar (a menos que quieras generar una excepcién, siempre vale la pena considerarlo).

¢ Cada objeto lleva su propio conjunto de propiedades, no interfieren entre si de ninguna manera.

Tales variables (propiedades) se llaman variables de instancia.

La palabra instancia sugiere que estan estrechamente conectadas a los objetos (que son instancias de clase),
no a las clases mismas. Echemos un vistazo mas de cerca.

Aqui hay un ejemplo:

ExampleClass:
~_init (self, val
self.first = val

set second(self, val
self.second val

example object 1 ExampleClass
example object 2 = ExampleClass

example object 2.set second

example object 3 = ExampleClass
example object 3.third

example object 1. dict
example object 2. dict
example object 3. dict

Se necesita una explicacién adicional antes de entrar en mas detalles. Echa un vistazo a las Ultimas tres lineas
del cédigo.

Los objetos de Python, cuando se crean, estan dotados de un pequeio conjunto de propiedades y
métodos predefinidos. Cada objeto los tiene, los quieras o no. Uno de ellos es una variable llamada _ dict__
(es un diccionario).

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last

32?;;?2:022 info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

12:01

La variable contiene los nombres y valores de todas las propiedades (variables) que el objeto contiene
actualmente. Vamos a usarla para presentar de forma segura el contenido de un objeto.

Vamos a sumergirnos en el cédigo ahora:

¢ La clase llamada ExampleClass tiene un constructor, el cual crea incondicionalmente una variable de
instancia llamada first, y le asigna el valor pasado a través del primer argumento (desde la perspectiva
del usuario de la clase) o el segundo argumento (desde la perspectiva del constructor); ten en cuenta el
valor predeterminado del pardmetro: cualquier cosa que puedas hacer con un parametro de funcién
regular también se puede aplicar a los métodos.
¢ La clase también tiene un método que crea otra variable de instancia, llamada second.
e Hemos creado tres objetos de la clase ExampleClass, pero todas estas instancias difieren:
o example_object 1 solo tiene una propiedad llamada first.
o example_object 2 tiene dos propiedades: first y second.
o example_object 3 ha sido enriquecido sobre la marcha con una propiedad llamada third uera del
cédigo de la clase: esto es posible y totalmente permisible.

La salida del programa muestra claramente que nuestras suposiciones son correctas: aqui estan:

{'first': 1}
{'second': 3, 'first': 2}
{'third': 5, 'first': 4}

Hay una conclusién adicional que deberia mencionarse aqui: el modificar una variable de instancia de
cualquier objeto no tiene impacto en todos los objetos restantes. Las variables de instancia estdn
perfectamente aisladas unas de otras.

ExampleClass:
~_init (self, val
self. first = val

set second(self, val
self. second = val

example object 1 ExampleClass
example object 2 = ExampleClass

example object 2.set second

example object 3 = ExampleClass
example object 3. third

example object 1. dict
example object 2. dict
example object 3. dict

Es casi lo mismo que el anterior. La Unica diferencia estd en los nombres de las propiedades. Hemos
antepuesto dos guiones bajos ().

Como sabes, tal adicién hace que la variable de instancia sea privada, se vuelve inaccesible desde el mundo
exterior.

El comportamiento real de estos nombres es un poco mas complicado, asi que ejecutemos el programa. Esta es

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

14/02/2026 17:18 25/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

la salida:

{' ExampleClass first': 1}
{' ExampleClass first': 2, ' ExampleClass second': 3}
{' ExampleClass first': 4, ' third': 5}

(Puedes ver estos nombres extrafos llenos de guiones bajos? ;De dénde provienen?

Cuando Python ve que deseas agregar una variable de instancia a un objeto y lo vas a hacer dentro de
cualquiera de los métodos del objeto, maneja la operacion de la siguiente manera:

e Coloca un nombre de clase antes de tu nombre.
¢ Coloca un guién bajo adicional al principio.

Es por ello que _first se convierte en _ExampleClass__first.

El nombre ahora es completamente accesible desde fuera de la clase. Puedes ejecutar un cédigo como
este:

print(example_object_1. ExampleClass__first)
Obtendras un resultado valido sin errores ni excepciones.
Como puedes ver, hacer que una propiedad sea privada es limitado.

No funcionara si agregas una variable de instancia fuera del cddigo de la clase. En este caso, se comportara
como cualquier otra propiedad ordinaria.

Variables de clase

Una variable de clase es una propiedad que existe en una sola copia y se almacena fuera de cualquier
objeto.

Nota: no existe una variable de instancia si no hay ningun objeto de la clase; solo existe una variable de clase
en una copia, incluso si no hay objetos en la clase.

Las variables de clase se crean de manera diferente. El ejemplo te dird mas:

ExampleClass:
counter
~_init (self, val
self. first = val
ExampleClass.counter +

example object 1 ExampleClass
example object 2 = ExampleClass
example object 3 = ExampleClass

example object 1. dict , example object 1.counter

example object 2. dict , example object 2.counter

example object 3. dict , example object 3.counter
Observa:

¢ Hay una asignacion en la primera linea de la definicidn de clase: establece la variable denominada

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

counter a 0; inicializando la variable dentro de la clase pero fuera de cualquiera de sus métodos hace que
la variable sea una variable de clase.

» El acceder a dicha variable tiene el mismo aspecto que acceder a cualquier atributo de instancia; esta en
el cuerpo del constructor; como puedes ver, el constructor incrementa la variable en uno; en efecto, la
variable cuenta todos los objetos creados.

Ejecutar el cddigo provocara el siguiente resultado:

{' ExampleClass first': 1} 3
{' ExampleClass first': 2} 3
{' ExampleClass first': 4} 3

Dos conclusiones importantes se pueden sacar del ejemplo:

¢ Las variables de clase no se muestran en el diccionario de un objeto dict (esto es natural ya que
las variables de clase no son partes de un objeto), pero siempre puedes intentar buscar en la variable del
mismo nombre, pero a nivel de clase, te mostraremos esto muy pronto.

¢ Una variable de clase siempre presenta el mismo valor en todas las instancias de clase (objetos).

El cambiar el nombre de una variable de clase tiene los mismos efectos que aquellos con los que ya esta
familiarizado.

Mira el ejemplo en el editor. ;Puedes adivinar su salida?

ExampleClass:
__counter
~_init (self, val
self. first = val
ExampleClass. counter +

example object 1 ExampleClass
example object 2 = ExampleClass
example object 3 = ExampleClass

example object 1. dict , example object 1. ExampleClass counter
example object 2. dict , example object 2. ExampleClass counter
example object 3. dict , example object 3. ExampleClass counter

Hemos dicho antes que las variables de clase existen incluso cuando no se cred ninguna instancia de clase
(objeto).

Ahora aprovecharemos la oportunidad para mostrarte la diferencia entre estas dos variables dict_, la de
la clase y la del objeto.

ExampleClass:
varia
~_init (self, val
ExampleClass.varia = val

ExampleClass. dict
example object = ExampleClass

ExampleClass. dict

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

14/02/2026 17:18 27/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

example object. dict
Echemos un vistazo mas de cerca:

Definimos una clase llamada ExampleClass.
La clase define una variable de clase llamada varia.
El constructor de la clase establece la variable con el valor del parametro.
Nombrar la variable es el aspecto mas importante del ejemplo porque:
o El cambiar la asignacién a self.varia = val crearia una variable de instancia con el mismo nombre
que la de la clase.
o El cambiar la asignacién a varia = val operaria en la variable local de un método; (te
recomendamos probar los dos casos anteriores; esto te facilitard recordar la diferencia).
5. La primera linea del cddigo fuera de la clase imprime el valor del atributo ExampleClass.varia . Nota:
utilizamos el valor antes de instanciar el primer objeto de la clase.

el A

Ejecuta el cddigo en el editor y verifica su salida.

{' module ': ' main ', 'varia': 1, ' init ': <function ExampleClass. init
at 0x7fc83922b0eO>, ' dict ': <attribute ' dict ' of 'ExampleClass' objects>,

' weakref ': <attribute ' weakref ' of 'ExampleClass' objects>, ' doc ':
None}

{' module ': ' main ', ‘'varia': 2, ' init ': <function ExampleClass. init
at 0x7fc83922b0eO>, ' dict ': <attribute ' dict ' of 'ExampleClass' objects>,

' weakref ': <attribute ' weakref ' of 'ExampleClass' objects>, ' doc ':
None}

Como puedes ver _dict__ contiene muchos mas datos que la contraparte de su objeto. La mayoria de ellos son
inGtiles ahora, el que queremos que verifiques cuidadosamente muestra el valor actual de varia.

Nota que el _dict__ del objeto estd vacio, el objeto no tiene variables de instancia.

Comprobando la existencia de un atributo

La actitud de Python hacia la instanciacién de objetos plantea una cuestién importante: en contraste con otros
lenguajes de programacion, es posible que no esperes que todos los objetos de la misma clase tengan
los mismos conjuntos de propiedades.

ExampleClass:
~_init (self, val
val %
self.a

self.b

example object = ExampleClass

example object.a
example object.b

El objeto creado por el constructor solo puede tener uno de los dos atributos posibles: a o b.

La ejecucién del cédigo producird el siguiente resultado:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

1
Traceback (most recent call last):
File ".main.py", line 11, in
print(example object.b)
AttributeError: 'ExampleClass' object has no attribute 'b'

Como puedes ver, acceder a un atributo de objeto (clase) no existente genera una excepcién AttributeError.

La instruccion try-except te brinda la oportunidad de evitar problemas con propiedades inexistentes.

ExampleClass:
~_init (self, val
val %
self.a

self.b

example object ExampleClass
example object.a

example object.b
AttributeError:

Como puedes ver, esta accién no es muy sofisticada. Esencialmente, acabamos de barrer el tema debajo de la
alfombra.

Afortunadamente, hay una forma mas de hacer frente al problema.

Python proporciona una funcién que puede verificar con seguridad si algtin objeto / clase contiene una
propiedad especifica. La funcidn se llama hasattr, y espera que le pasen dos argumentos:

¢ La clase o el objeto que se verifica.
¢ El nombre de la propiedad cuya existencia se debe informar (Nota: debe ser una cadena que contenga el
nombre del atributo).

La funcidén retorna True o False.

Asi es como puedes utilizarla:

ExampleClass:
~_init (self, val
val %
self.a

self.b
example object = ExampleClass
example object.a

hasattr(example object, 'b'
example object.b

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

14/02/2026 17:18 29/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

No olvides que la funcién hasattr() también puede operar en clases. Puedes usarla para averiguar si una
variable de clase esta disponible, como en el ejemplo en el editor.

La funcién devuelve True si la clase especificada contiene un atributo dado, y False de lo contrario.

ExampleClass:
attr

hasattr(ExampleClass, 'attr'
hasattr(ExampleClass, 'prop'

Un ejemplo més: analiza el cédigo a continuacién e intenta predecir su salida:
ExampleClass:

__init (self
self.b

example object ExampleClass

hasattr(example object, 'b'
hasattr(example object, 'a’
hasattr (ExampleClass, 'b'
hasattr(ExampleClass, 'a'

Bien, hemos llegado al final de esta seccién. En la siguiente seccién vamos a hablar sobre los métodos, ya que
los métodos dirigen los objetos y los activan.

Puntos Clave

1. Una variable de instancia es una propiedad cuya existencia depende de la creacién de un objeto. Cada objeto
puede tener un conjunto diferente de variables de instancia.

Ademads, se pueden agregar y quitar libremente de los objetos durante su vida Util. Todas las variables de
instancia de objeto se almacenan dentro de un diccionario dedicado llamado _ dict_, contenido en cada objeto
por separado.

2. Una variable de instancia puede ser privada cuando su nombre comienza con __, pero no olvides que dicha
propiedad aun es accesible desde fuera de la clase usando un nombre modificado construido como <
codel>_ClassName__PrivatePropertyName.

3. Una variable de clase es una propiedad que existe exactamente en una copia y no necesita ningun objeto
creado para ser accesible. Estas variables no se muestran como contenido de _ dict_.

Todas las variables de clase de una clase se almacenan dentro de un diccionario dedicado llamado __dict__,
contenido en cada clase por separado.

4. Una funcién llamada hasattr() se puede utilizar para determinar si algin objeto o clase contiene cierta
propiedad especificada.

Por ejemplo:

Sample:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

gamma # Class variable.

__init (self

self.alpha # Variable de instancia.

self. delta # Variable de instancia privada.
obj Sample
obj.beta # Otra variable de instancia (que existe solo dentro de la instancia
"obj").

obj. dict

El cédigo da como salida:
{'alpha': 1, ' Sample delta': 3, 'beta': 2}

https://edube.org/learn/python-essentials-2-esp/poo-m-eacute-todos-10

Métodos a detalle

Resumamos todos los hechos relacionados con el uso de métodos en las clases de Python.
Como ya sabes, un método es una funcion que esta dentro de una clase.

Existe un requisito fundamental: un método esta obligado a tener al menos un parametro (no existen
métodos sin parametros; un método puede invocarse sin un argumento, pero no puede declararse sin
pardmetros).

El primer (o Unico) parametro generalmente se denomina self. Te sugerimos que lo sigas nombrando de esta
manera, darle otros nombres puede causar sorpresas inesperadas.

El nombre self sugiere el propésito del pardmetro: identifica el objeto para el cual se invoca el método.

Si vas a invocar un método, no debes pasar el argumento para el parametro self, Python lo configurara por ti.

Classy:
method(self
"método"
obj Classy
obj.method

El cédigo da como salida:
método

Toma en cuenta la forma en que hemos creado el objeto, hemos tratado el nombre de la clase como una
funcion, y devuelve un objeto recién instanciado de la clase.

Si deseas que el método acepte parametros distintos a self, debes:

e Colocarlos después de self en la definicién del método.
¢ Pasarlos como argumentos durante la invocacidn sin especificar self.

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

https://edube.org/learn/python-essentials-2-esp/poo-m-eacute-todos-10

14/02/2026 17:18 31/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

Justo como aqui:

Classy:
method(self, par):
"método:", par

obj Classy
obj.method
obj.method
obj .method

El cédigo da como salida:

método: 1
método: 2
método: 3

El pardmetro self es usado para obtener acceso a la instancia del objeto y las variables de clase.

El ejemplo muestra ambas formas de utilizar el parametro self:

Classy:
varia
method (self
self.varia, self.var

obj Classy
obj.var
obj.method

El codigo da como salida:
2 3

El pardmetro self también se usa para invocar otros métodos desde dentro de la clase.

Justo como aqui:

Classy:
other(self
"otro"

method (self

"método"
self.other

obj Classy
obj.method

El cédigo da como salida:

método

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

otro

Si se nombra un método de esta manera: __init_, no sera un método regular, sera un constructor.

Si una clase tiene un constructor, este se invoca automatica e implicitamente cuando se instancia el objeto de
la clase.

El constructor:

» Esta obligado a tener el parametro self (se configura automaticamente).

¢ Pudiera (pero no necesariamente) tener mas parametros que solo self; si esto sucede, la forma en
que se usa el nombre de la clase para crear el objeto debe tener la definicién __init_.

¢ Se puede utilizar para configurar el objeto, es decir, inicializa adecuadamente su estado interno,
crea variables de instancia, crea instancias de cualquier otro objeto si es necesario, etc.

El ejemplo muestra un constructor muy simple pero funcional.

Classy:
__init (self, value
self.var = value

obj 1 = Classy("objeto"
obj 1.var

Ejecdtalo. El cédigo da como salida:

objeto

Ten en cuenta que el constructor:

* No puede retornar un valor, ya que esta disefiado para devolver un objeto recién creado y nada mas.
* No se puede invocar directamente desde el objeto o desde dentro de la clase (puedes invocar
un constructor desde cualquiera de las superclases del objeto, pero discutiremos esto mas adelante).

Como __init__ es un método, y un método es una funcién, puedes hacer los mismos trucos con constructores y
métodos que con las funciones ordinarias.

El ejemplo en el editor muestra como definir un constructor con un valor de argumento predeterminado.
Pruébalo.

Classy:

~_init (self, value = None
self.var = value

obj 1 = Classy("objeto"
obj 2 = Classy

obj 1.var
obj 2.var

El cédigo da como salida:

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

14/02/2026 17:18 33/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

objeto
None

Todo lo que hemos dicho sobre el manejo de los nombres también se aplica a los nombres de métodos, un
método cuyo nombre comienza con __ esta (parcialmente) oculto.

El ejemplo muestra este efecto:

Classy:
visible(self):
"visible"

__hidden(self):
"oculto"

obj Classy
obj.visible
:obj.gihidden
. "fallido"
obj. Classy hidden
El c6digo da como salida:
visible

fallido
oculto

La vida interna de clases y objetos

Cada clase de Python y cada objeto de Python estd pre-equipado con un conjunto de atributos Utiles que
pueden usarse para examinar sus capacidades.

Ya conoces uno de estos: es la propiedad __dict__.

Observemos como esta propiedad trata con los métodos
Classy:
varia
__init (self):
self.var

method(self):

__hidden(self):

obj Classy

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

obj. dict
Classy. dict

Ejecutalo para ver que produce. Verifica el resultado.

{'var': 2}

{' module ': ' main_ ', 'varia': 1, ' init ': <function Classy. init at
0x7fcb0ae8c320>, 'method': <function Classy.method at 0x7fcb@ae8c3b0>,

' Classy hidden': <function Classy. hidden at Ox7fcb@ae8c440>, ' dict ':
<attribute ' dict ' of 'Classy' objects>, ' weakref ': <attribute ' weakref
of 'Classy' objects>, ' doc ': None}

Encuentra todos los métodos y atributos definidos. Localiza el contexto en el que existen: dentro del objeto o
dentro de la clase.

__dict__es un diccionario. Otra propiedad incorporada que vale la pena mencionar es una cadena llamada
name_ .

La propiedad contiene el nombre de la clase. No es nada emocionante, es solo una cadena.
Nota: el atributo __name__ estd ausente del objeto, existe solo dentro de las clases.

Si deseas encontrar la clase de un objeto en particular, puedes usar una funcién llamada type(), la cual
es capaz (entre otras cosas) de encontrar una clase que se haya utilizado para crear instancias de cualquier
objeto.

Observa el cddigo en el editor, ejecutalo y compruébalo tu mismo.

Classy:

Classy. name
obj Classy
type(obj). name

La salida del cédigo es:

Classy
Classy

Nota: algo como esto
obj. name

causara un error.

__module__ es una cadena, también almacena el nombre del médulo que contiene la definicién de la
clase.

Vamos a comprobarlo: ejecuta el cddigo en el editor.

La salida del cddigo es:

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

14/02/2026 17:18 35/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

__main_
__main

Como sabes, cualquier médulo llamado __main__ en realidad no es un mddulo, sino es el archivo actualmente
en ejecucion.

__bases__es una tupla. La tupla contiene clases (no nhombres de clases) que son superclases directas de la
clase.

El orden es el mismo que el utilizado dentro de la definicién de clase.
Te mostraremos solo un ejemplo muy basico, ya que queremos resaltar cémo funciona la herencia.

Ademas, te mostraremos cémo usar este atributo cuando discutamos los aspectos orientados a objetos de las
excepciones.

Nota: solo las clases tienen este atributo, los objetos no.

Hemos definido una funcién llamada printBases(), disefiada para presentar claramente el contenido de la tupla.

SuperOne:

SuperTwo:

Sub (SuperOne, SuperTwo

printBases(cls
I(1 end [}

X cls. bases :
X. name_ , end=' '

I)I

printBases (SuperOne
printBases (SuperTwo
printBases (Sub

Su salida es:
(object)
(object)

(SuperOne SuperTwo)

Nota: una clase sin superclases explicitas apunta a object (una clase de Python predefinida) como su
antecesor directo.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

Reflexidn e introspeccion

Todo esto permite que el programador de Python realice dos actividades importantes especificas para muchos
lenguajes objetivos. Las cuales son:

¢ Introspeccidn, que es la capacidad de un programa para examinar el tipo o las propiedades de un
objeto en tiempo de ejecucién.

¢ Reflexion, que va un paso mas alla, y es la capacidad de un programa para manipular los valores,
propiedades y/o funciones de un objeto en tiempo de ejecucion.

En otras palabras, no tienes que conocer la definicién completa de clase/objeto para manipular el objeto, ya que
el objeto y/o su clase contienen los metadatos que te permiten reconocer sus caracteristicas durante la
ejecucién del programa.

Investigando Clases
¢Qué puedes descubrir acerca de las clases en Python? La respuesta es simple: todo.

Tanto la reflexién como la introspeccién permiten al programador hacer cualquier cosa con cada objeto, sin
importar de dénde provenga.

class MyClass:
pass

obj = MyClass()

obj.a =1
obj.b = 2
obj.i =3

obj.ireal = 3.
obj.integer =
obj.z =5

5
4

def incIntsI(obj):
for name in obj. dict .keys():
if name.startswith('i'):
val = getattr(obj, name)
if isinstance(val, int):
setattr(obj, name, val + 1)

print(obj. dict)
incIntsI(obj)
print(obj. dict)

La funcién llamada incIntsI() toma un objeto de cualquier clase, escanea su contenido para encontrar todos
los atributos enteros con nombres que comienzan con i, y los incrementa en uno.

(Imposible? jDe ninguna manera!

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

14/02/2026 17:18 37/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

Asi es como funciona:

¢ La linea 1: define una clase muy simple...

e Las lineas 3 ala 10: ... la llenan con algunos atributos.

¢ La linea 14: jesta es nuestra funcién!

e La linea 15: escanea el atributo __dict_, buscando todos los nombres de atributos.

¢ La linea 16: si un nombre comienza con i...

e Lalinea 17: ... utiliza la funcién getattr() para obtener su valor actual; nota: getattr() toma dos
argumentos: un objeto y su nombre de propiedad (como una cadena) y devuelve el valor del atributo
actual.

¢ La linea 18: comprueba si el valor es de tipo entero, emplea la funcién isinstance() para este
propdsito (discutiremos esto mas adelante).

¢ Lalinea 19: si la comprobacién sale bien, incrementa el valor de la propiedad haciendo uso de la funcién
setattr(); la funcién toma tres argumentos: un objeto, el nombre de la propiedad (como una cadena) y
el nuevo valor de la propiedad.

El cédigo da como salida:

{'a': 1, 'integer': 4, 'b': 2, 'i': 3, 'z': 5, 'ireal': 3.5}
{'a': 1, 'integer': 5, 'b': 2, 'i': 4

Puntos Clave

1. Un método es una funcién dentro de una clase. El primer (o Unico) parametro de cada método se suele llamar
self, que estd disefiado para identificar al objeto para el que se invoca el método con el fin de acceder a las
propiedades del objeto o invocar sus métodos.

2. Si una clase contiene un constructor (un método llamado __init), este no puede devolver ningln valor y no
se puede invocar directamente.

3. Todas las clases (pero no los objetos) contienen una propiedad llamada __name__, que almacena el nombre
de la clase. Ademas, una propiedad llamada __module__almacena el nombre del médulo en el que se ha
declarado la clase, mientras que la propiedad llamada __bases _ es una tupla que contiene las superclases de
una clase.

Por ejemplo:

Sample:
__init (self
self.name = Sample. name
myself(self
"Mi nombre es " + self.name + " y vivo en " + Sample. module

obj Sample
obj.myself
El céddigo da como salida:

Mi nombre es Sample y vivo en _ main

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

ejercicio
Objetivos

¢ Mejorar las habilidades del estudiante para definir clases desde cero.
¢ Definir y usar variables de instancia.
o Definir y usar métodos.

Escenario

Necesitamos una clase capaz de contar segundos. ;Facil? No es tan facil como podrias pensar, ya que
tendremos algunos requisitos especificos.

Léelos con atencidn, ya que la clase sobre la que escribes se utilizard para lanzar cohetes en misiones
internacionales a Marte. Es una gran responsabilidad. jContamos contigo!

Tu clase se llamara Timer (temporizador en espafiol). Su constructor acepta tres argumentos que representan
horas (un valor del rango [0..23]; usaremos tiempo militar), minutos (del rango [0. .59]) y segundos (del
rango [0..59]).

Cero es el valor predeterminado para todos los pardmetros anteriores. No es necesario realizar ninguna
comprobacién de validacion.

La clase en si deberia proporcionar las siguientes facilidades:

¢ Los objetos de la clase deben ser «<imprimibles», es decir, deben poder convertirse implicitamente en
cadenas de la siguiente forma: «<hh:mm:ss», con ceros a la izquierda agregados cuando cualquiera de los
valores es menor que 10.

¢ La clase debe estar equipada con métodos sin parametros llamados next_second() y previous_second (),
incrementando el tiempo almacenado dentro de los objetos en +1/-1 segundos respectivamente.

Emplea las siguientes sugerencias:

¢ Todas las propiedades del objeto deben ser privadas.
¢ Considera escribir una funcién separada (jno un método!) para formatear la cadena con el tiempo.

Timer:
_dinit (??7?
#
Escribir cédigo aqui.
#

str (self

Escribir cédigo aqui.

=H:=ht:=ﬁ:|

next second(self

#

Escribir cdédigo aqui.
#

prev_second(self

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

14/02/2026 17:18 39/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

#
Escribir cdédigo aqui.
#

timer = Timer
timer

timer.next second
timer

timer.prev second
timer

Ejecuta tu cédigo y comprueba si el resultado es el mismo que el nuestro.

Salida Esperada

23:59:59
00:00:00
23:59:59

ejercicio
Objetivos

e Mejorar las habilidades del estudiante para definir clases desde cero.
¢ Definir y usar variables de instancia.
¢ Definir y usar métodos.

Escenario

Tu tarea es implementar una clase llamada Weeker. Si, tus ojos no te engafian, este nombre proviene del hecho
de que los objetos de esta clase podran almacenar y manipular los dias de la semana.

El constructor de la clase acepta un argumento: una cadena. La cadena representa el nombre del dia de la
semana y los Unicos valores aceptables deben provenir del siguiente conjunto:

Lun Mar Mie Jue Vie Sab Dom

Invocar al constructor con un argumento desde fuera de este conjunto deberia generar la excepcién
WeekDayError (definela tu mismo; no te preocupes, pronto hablaremos sobre la naturaleza objetiva de las
excepciones). La clase debe proporcionar las siguientes facilidades:

¢ Los objetos de la clase deben ser «imprimibles», es decir, deben poder convertirse implicitamente en
cadenas de la misma forma que los argumentos del constructor.

¢ La clase debe estar equipada con métodos de un parametro llamados add_days(n) y subtract_days(n),
siendo n un nimero entero que actualiza el dia de la semana almacenado dentro del objeto mediante el
nimero de dias indicado, hacia adelante o hacia atras.

¢ Todas las propiedades del objeto deben ser privadas.

Completa la plantilla que te proporcionamos en el editor, ejecuta su cédigo y verifica si tu salida se ve igual que
la nuestra.

WeekDayError (Exception

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:

05/07/2022

12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

#

Weeker:

Escribir cdédigo aqui.

#

init (self, day

#t:*t#:|

str (self

44::'4:44:‘

add days(self, n
#

Escribir cdédigo aqui.

#

subtract days(self, n
#

Escribir cdédigo aqui.

#

weekday = Weeker('Lun'

weekday

weekday.add days(15

weekday

weekday.subtract days(23

weekday

weekday = Weeker('Lun'

WeekDayError:

"Lo siento, no puedo atender tu solicitud."

Salida Esperada

Lun
Mar
Dom

Lo siento, no puedo atender tu solicitud.

Objetivos

¢ Mejorar las habilidades del estudiante para definir clases desde cero.
¢ Definir y usar variables de instancia

o Definir y usar métodos.

Escribir cédigo aqui.

Escribir cédigo aqui.

https://miguelangel.torresegea.es/wiki/

Printed on 14/02/2026 17:18

14/02/2026 17:18 41/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

Escenario

Visitemos un lugar muy especial: un plano con el sistema de coordenadas cartesianas (puedes obtener mas
informacién sobre este concepto aqui: https://en.wikipedia.org/wiki/Cartesian_coordinate_system).

Cada punto ubicado en el plano puede describirse como un par de coordenadas habitualmente llamadas x y y.
Queremos que escribas una clase en Python que almacene ambas coordenadas como nimeros flotantes.
Ademads, queremos que los objetos de esta clase evallen las distancias entre cualquiera de los dos puntos
situados en el plano.

La tarea es bastante facil si empleas la funcién denominada hypot() (disponible a través del médulo math) que
evalla la longitud de la hipotenusa de un tridngulo rectdngulo (mds detalles aqui:
https://en.wikipedia.org/wiki/Hypotenuse) y aqui:
https://docs.python.org/3.7/library/math.html#trigonometric-functions.

Asi es como imaginamos la clase:

¢ Se llama Point.

¢ Su constructor acepta dos argumentos (x y y respectivamente), ambos por defecto se igualan a cero.

¢ Todas las propiedades deben ser privadas.

¢ La clase contiene dos métodos sin parametros llamados getx() y gety(), que devuelven cada una de las
dos coordenadas (las coordenadas se almacenan de forma privada, por lo que no se puede acceder a
ellas directamente desde el objeto).

¢ La clase proporciona un método llamado distance_from_xy(x,y), que calcula y devuelve la distancia entre
el punto almacenado dentro del objeto y el otro punto dado en un par de nimeros flotantes.

e La clase proporciona un método llamado distance_from_point(point), que calcula la distancia (como el
método anterior), pero la ubicacién del otro punto se da como otro objeto de clase Point.

Completa la plantilla que te proporcionamos en el editor, ejecuta tu cédigo y verifica si tu salida se ve igual que
la nuestra.

math
Point:
init (self, x y

Escribir el cédigo aqui.

=H:=H:=H:‘

getx(self

#

Escribir el cédigo aqui.
#

gety(self

#

Escribir el cdédigo aqui.
#

distance from xy(self, x, y
#

Escribir el cdédigo aqui.
#

distance from point(self, point

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

https://en.wikipedia.org/wiki/Cartesian_coordinate_system
https://en.wikipedia.org/wiki/Hypotenuse
https://docs.python.org/3.7/library/math.html#trigonometric-functions

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

#
Escribir el cédigo aqui.
#

pointl Point

point2 Point
pointl.distance from point(point2
point2.distance from xy

Salida esperada

1.4142135623730951
1.4142135623730951

ejercicio
Objetivos

¢ Mejorar las habilidades del estudiante para definir clases desde cero.
e Emplear composicién.

Escenario

Ahora vamos a colocar la clase Point (ver Lab 3.4.1.14) dentro de otra clase. Ademads, vamos a poner tres
puntos en una clase, lo que nos permitira definir un tridngulo.;Cémo podemos hacerlo?

La nueva clase se llamara Triangle y esto es lo que queremos:

¢ El constructor acepta tres argumentos - todos ellos son objetos de la clase Point.

¢ Los puntos se almacenan dentro del objeto como una lista privada

¢ La clase proporciona un método sin parametros llamado perimeter(), que calcula el perimetro del
triangulo descrito por los tres puntos; el perimetro es la suma de todas las longitudes de los lados (lo
mencionamos para que conste, aunque estamos seguros de que tl mismo lo conoces perfectamente).

Completa la plantilla que te proporcionamos en el editor, ejecuta tu cédigo y verifica si tu salida se ve igual que
la nuestra.

math
Point:
#

El cédigo copiado del laboratorio anterior.
#

Triangle:
init (self, verticel, vertice2, vertice3

Escribir el cdédigo aqui.

=H:=H:=H:‘

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

14/02/2026 17:18 43/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

perimeter(self

#
Escribir el cédigo aqui.
#
triangle = Triangle(Point Point Point

triangle.perimeter

A continuacién puedes copiar el cédigo de la clase Point, el cual se utilizo en el laboratorio anterior:

Point:
~init (self, x y
self. x = Xx
self. y =y

Salida esperada

3.414213562373095
Herencia: ;por qué y como?
Antes de comenzar a hablar sobre la herencia, queremos presentar un nuevo y practico mecanismo utilizado

por las clases y los objetos de Python: es la forma en que el objeto puede presentarse a si mismo.

Comencemos con un ejemplo.

Star:
~_init (self, name, galaxy
self.name = name
self.galaxy = galaxy

sun Star("Sol", "Via Lactea"
sun

El programa imprime solo una linea de texto, que en nuestro caso es:
< main__ .Star object at 0x7f1074cc7c50>

Si ejecutas el mismo cddigo en tu computadora, veras algo muy similar, aunque el nimero hexadecimal (la
subcadena que comienza con 0x) sera diferente, ya que es solo un identificador de objeto interno utilizado por
Python, y es poco probable que aparezca igual cuando se ejecuta el mismo cédigo en un entorno diferente.

Como puedes ver, la impresién aqui no es realmente Util, y algo mas especifico, es preferible.
Afortunadamente, Python ofrece tal funcién.

Cuando Python necesita que alguna clase u objeto deba ser presentado como una cadena (es recomendable
colocar el objeto como argumento en la invocacién de la funcién print()), intenta invocar un método llamado
__str__ () del objeto y emplear la cadena que devuelve.

El método por default str () devuelve la cadena anterior: fea y poco informativa. Puedes cambiarlo

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last

gg?;;fz:ozz info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

12:01

definiendo tu propio método.

Star:
__init (self, name, galaxy
self.name = name
self.galaxy = galaxy

str (self
self.name + ' en ' + self.galaxy

sun Star("Sol", "Via Lactea"
sun

El método nuevo _ str__ () genera una cadena que consiste en los nombres de la estrella y la galaxia, nada
especial, pero los resultados de impresién se ven mejor ahora, ;no?

El término herencia es mas antiguo que la programacién de computadoras, y describe la practica comin de
pasar diferentes bienes de una persona a otra después de la muerte de esa persona. El término, cuando se
relaciona con la programacién de computadoras, tiene un significado completamente diferente.

remn

AL R

Definamos el término para nuestros propdsitos:

La herencia es una practica comun (en la programacién de objetos) de pasar atributos y métodos de la
superclase (definida y existente) a una clase recién creada, llamada subclase.

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

14/02/2026 17:18 45/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

En otras palabras, la herencia es una forma de construir una nueva clase, no desde cero, sino
utilizando un repertorio de rasgos ya definido. La nueva clase hereda (y esta es la clave) todo el
equipamiento ya existente, pero puedes agregar algo nuevo si es necesario.

Gracias a eso, es posible construir clases mas especializadas (mas concretas) utilizando algunos
conjuntos de reglas y comportamientos generales predefinidos.

El factor mds importante del proceso es la relacién entre la superclase y todas sus subclases (nota: si B es una
subclase de Ay C es una subclase de B, esto también significa que C es una subclase de A, ya que la relacién es
totalmente transitiva).

Aqui se presenta un ejemplo muy simple de herencia de dos niveles:

Vehicle:

LandVehicle(Vehicle

TrackedVehicle(LandVehicle

Todas las clases presentadas estan vacias por ahora, ya que te mostraremos cémo funcionan las relaciones
mutuas entre las superclases y las subclases. Las llenaremos con contenido pronto.

Podemos decir que:

¢ La clase Vehicle es la superclase para clases LandVehicle y TrackedVehicle.
¢ La clase LandVehicle es una subclase de Vehicle y la superclase de TrackedVehicle al mismo tiempo.
¢ La clase TrackedVehicle es una subclase tanto de Vehicle y LandVehicle.

El conocimiento anterior proviene de la lectura del cédigo (en otras palabras, lo sabemos porque podemos
verlo).

¢Python sabe lo mismo? ;Es posible preguntarle a Python al respecto? Si lo es.

Herencia: issubclass()

Python ofrece una funcién que es capaz de identificar una relacién entre dos clases, y aunque su
diagndstico no es complejo, puede verificar si una clase particular es una subclase de cualquier otra
clase.

Asi es como se ve:
issubclass(ClassOne, ClassTwo

La funcién devuelve True si ClassOne es una subclase de ClassTwo, y False de lo contrario.

Vamos a verlo en accién, puede sorprenderte.

Vehicle:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

LandVehicle(Vehicle

TrackedVehicle(LandVehicle

clsl Vehicle, LandVehicle, TrackedVehicle
cls2 Vehicle, LandVehicle, TrackedVehicle
issubclass(clsl, cls2 end="\t"

Hay dos bucles anidados. Su propésito es verificar todos los pares de clases ordenadas posibles y que
imprima los resultados de la verificacion para determinar si el par coincide con la relacién subclase-
superclase.

Ejecuta el cédigo. El programa produce el siguiente resultado:

True False False
True True False
True True True

Hagamos que el resultado sea mas legible:

| esuna subclasede - Vehicle LandVehicle TrackedVehicle
Vehicle True False False
LandVehicle True True False
TrackedVehicle True True True

Existe una observacién importante que hacer: cada clase se considera una subclase de si misma.
Herencia: isinstance()

Como ya sabes, un objeto es la encarnacidn de una clase. Esto significa que el objeto es como un pastel
horneado usando una receta que se incluye dentro de la clase.

Esto puede generar algunos problemas.

Supongamos que tienes un pastel (por ejemplo, resultado de un argumento pasado a tu funcién). Deseas saber
que receta se ha utilizado para prepararlo. ;Por qué? Porque deseas saber que esperar de él, por ejemplo, si
contiene nueces o no, lo cual es informacién crucial para ciertas personas.

Del mismo modo, puede ser crucial si el objeto tiene (o no tiene) ciertas caracteristicas. En otras palabras, si es
un objeto de cierta clase o no.

Tal hecho podria ser detectado por la funcién llamada isinstance():

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

14/02/2026 17:18 47/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

isinstance(objectName, ClassName

La funciéon devuelve True si el objeto es una instancia de la clase, o False de lo contrario

Ser una instancia de una clase significa que el objeto (el pastel) se ha preparado utilizando una
receta contenida en la clase o en una de sus superclases.

No lo olvides: si una subclase contiene al menos las mismas caracteristicas que cualquiera de sus superclases,
significa que los objetos de la subclase pueden hacer lo mismo que los objetos derivados de la superclase, por
lo tanto, es una instancia de su clase de inicio y cualquiera de sus superclases.

Vehicle:

LandVehicle(Vehicle

TrackedVehicle(LandVehicle

my vehicle = Vehicle
my land vehicle = LandVehicle
my tracked vehicle = TrackedVehicle

obj my _vehicle, my land vehicle, my tracked vehicle
cls Vehicle, LandVehicle, TrackedVehicle
isinstance(obj, cls), end="\t"

Hemos creado tres objetos, uno para cada una de las clases. Luego, usando dos bucles anidados, verificamos
todos los pares posibles de clase de objeto para averiguar si los objetos son instancias de las clases.

Ejecuta el cédigo.

Esto es lo que obtenemos:

True False False
True True False
True True True

Hagamos que el resultado sea mas legible:

| esunainstanciade - Vehicle LandVehicle TrackedVehicle
my_vehicle True False False
my_land_vehicle True True False
my_tracked_vehicle True True True

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

Herencia: el operador is

También existe un operador de Python que vale la pena mencionar, ya que se refiere directamente a los

objetos: aqui esta:

object one object two

El operador is verifica si dos variables, en este caso (object_one y object_two) se refieren al mismo

objeto.

No olvides que las variables no almacenan los objetos en si, sino solo los identificadores que apuntan a la

memoria interna de Python.

Asignar un valor de una variable de objeto a otra variable no copia el objeto, sino solo su identificador. Es por

ello que un operador como is puede ser muy Util en ciertas circunstancias.

Echa un vistazo al cédigo en el editor.

SampleClass:
~_init (self, val
self.val = val

object 1 = SampleClass
object 2 SampleClass
object 3 = object 1
object 3.val +

object 1 object 2

object 2 object 3

object 3 object 1

object 1.val, object 2.val, object 3.val
string 1 = "Mary tenia un "
string 2 "Mary tenia un corderito"
string 1 += "corderito"

string 1 string 2, string 1 string 2

Analicémoslo:

e Existe una clase muy simple equipada con un constructor simple, que crea una sola propiedad. La clase
se usa para instanciar dos objetos. El primero se asigna a otra variable, y su propiedad val se incrementa

€n uno.

¢ Luego, el operador is se aplica tres veces para verificar todos los pares de objetos posibles, y todos los

valores de la propiedad val son mostrados en pantalla.

¢ La Ultima parte del cédigo lleva a cabo otro experimento. Después de tres tareas, ambas cadenas
contienen los mismos textos, pero estos textos se almacenan en diferentes objetos.

El cédigo imprime:

False
False
True

https://miguelangel.torresegea.es/wiki/

Printed on 14/02/2026 17:18

14/02/2026 17:18 49/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

121
True False

Los resultados prueban que object 1y object 3 son en realidad los mismos objetos, mientras que string 1y
string 2 no lo son, a pesar de que su contenido sea el mismo.

Como Python encuentra propiedades y métodos

Ahora veremos como Python trata con los métodos de herencia.

Super:
__init (self, name
self.name name

_ str_ (self
"Mi nombre es " + self.name +

Sub(Super
~_init (self, name
Super. init (self, name

obj Sub("Andy"
obj

Vamos a analizarlo:

¢ Existe una clase llamada Super, que define su propio constructor utilizado para asignar la propiedad del
objeto, llamada name.

¢ La clase también define el método _ str__ (), lo que permite que la clase pueda presentar su identidad
en forma de texto.

¢ La clase se usa luego como base para crear una subclase llamada Sub. La clase Sub define su propio
constructor, que invoca el de la superclase. Toma nota de como lo hemos hecho: Super.__init_(self,
name).

e Hemos nombrado explicitamente la superclase y hemos apuntado al método para invocar a
__init_ (), proporcionando todos los argumentos necesarios.

¢ Hemos instanciado un objeto de la clase Sub y lo hemos impreso.

El c6digo da como salida:
Mi nombre es Andy.

Nota: Como no existe el método str__ () dentro de la clase Sub, la cadena a imprimir se producira dentro
de la clase Super. Esto significa que el método str () ha sido heredado por la clase Sub.

Super:
~_init (self, name
self.name name

_ str_ (self
"Mi nombre es " + self.name + ".

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

Sub (Super
~_init (self, name
super(). 1init (name

obj Sub("Andy"
obj

Lo hemos modificado para mostrarte otro método de acceso a cualquier entidad definida dentro de la
superclase.

En el ejemplo anterior, nombramos explicitamente la superclase. En este ejemplo, hacemos uso de la funcién
super(), la cual accede a la superclase sin necesidad de conocer su nombre:

super(). 1init (name

La funcién super() crea un contexto en el que no tiene que (ademas, no debe) pasar el argumento propio al
método que se invoca; es por eso que es posible activar el constructor de la superclase utilizando solo un
argumento.

Nota: puedes usar este mecanismo no solo para invocar al constructor de la superclase, pero también
para obtener acceso a cualquiera de los recursos disponibles dentro de la superclase.

Intentemos hacer algo similar, pero con propiedades (mas precisamente con: variables de clase).

Probando propiedades: variables de clase.
Super:
supVar

Sub (Super
subVar

obj = Sub

obj.subVar
obj.supVar

Como puedes observar, la clase Super define una variable de clase llamada supVar, y la clase Sub define una
variable llamada subVar.

Ambas variables son visibles dentro del objeto de clase Sub, es por ello que el cddigo da como salida:

El mismo efecto se puede observar con variables de instancia, observa el segundo ejemplo en el editor.

Probando propiedades: variables de instancia.
Super:
~_init (self
self.supVar

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

14/02/2026 17:18 51/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

Sub (Super
__init (self
super(). init

self.subVar

obj Sub

obj.subVar
obj.supVar

El constructor de la clase Sub crea una variable de instancia llamada subVar, mientras que el constructor de
Super hace lo mismo con una variable de nombre supVar. Al igual que el ejemplo anterior, ambas variables son
accesibles desde el objeto de clase Sub.

La salida del programa es:

12
11

Nota: La existencia de la variable supVar obviamente esta condicionada por la invocacion del constructor de la
clase Super. Omitirlo daria como resultado la ausencia de la variable en el objeto creado (pruébalo tu mismo).

Ahora es posible formular una declaracién general que describa el comportamiento de Python.
Cuando intentes acceder a una entidad de cualquier objeto, Python intentard (en este orden):

¢ Encontrarla dentro del objeto mismo.
e Encontrarla en todas las clases involucradas en la linea de herencia del objeto de abajo hacia arriba.

Si ambos intentos fallan, una excepcién (AttributeError) sera generada.

La primera condicién puede necesitar atencién adicional. Como sabes, todos los objetos derivados de una clase
en particular pueden tener diferentes conjuntos de atributos, y algunos de los atributos pueden agregarse al
objeto mucho tiempo después de la creacién del objeto.

El ejemplo en el editor resume esto en una linea de herencia de tres niveles.

Levell:
variable 1
__init (self
self.var 1

fun 1(self

Level2(Levell
variable 2
__init (self
super(). init
self.var 2

fun 2(self

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last

(L;g?(?;fz:ozz info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

12:01

Level3(Level2

variable 3
__init (self
super(). init
self.var 3
fun 3(self
obj Level3

obj.variable 1, obj.var 1, obj.fun 1
obj.variable 2, obj.var 2, obj.fun 2
obj.variable 3, obj.var 3, obj.fun 3

100 101 102
200 201 202
300 301 302

Todos los comentarios que hemos hecho hasta ahora estén relacionados con casos de herencia unica,
cuando una subclase tiene exactamente una superclase. Esta es la situacién mas comun (y también la
recomendada).

Python, sin embargo, ofrece mucho mas aqui. En las préximas lecciones te mostraremos algunos ejemplos de
herencia miiltiple.

La herencia miiltiple ocurre cuando una clase tiene mas de una superclase.

Sintacticamente, dicha herencia se presenta como una lista de superclases separadas por comas entre
paréntesis después del nombre de la nueva clase, al igual que aqui:

SuperA:

var_a
fun_a(self

SuperB:
var b
fun b(self

Sub (SuperA, SuperB

obj = Sub

obj.var a, obj.fun a
obj.var b, obj.fun b

La clase Sub tiene dos superclases: SuperA y SuperB. Esto significa que la clase Sub hereda todos los bienes
ofrecidos por ambas clases SuperA y SuperB.

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

14/02/2026 17:18 53/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

El codigo imprime:

10 11
20 21

Ahora es el momento de introducir un nuevo término - overriding (anulacién).

¢Qué crees que sucederd si mas de una de las superclases define una entidad con un nombre en particular?

Levell:
var
fun(self

Level2(Levell
var
fun(self

Level3(Level2

obj Level3
obj.var, obj.fun

Tanto la clase, Levell y Level2 definen un método llamado fun() y una propiedad llamada var. ;Significard
esto el objeto de la claseLevel3 podra acceder a dos copias de cada entidad? De ningln modo.

La entidad definida después (en el sentido de herencia) anula la misma entidad definida
anteriormente. Es por eso que el cédigo produce el siguiente resultado:

200 201

Como puedes ver, la variable de clase var y el método fun() de la clase Level2 anula las entidades de los
mismos nombres derivados de la clase Levell.

Esta caracteristica se puede usar intencionalmente para modificar el comportamiento predeterminado de las
clases (o definido previamente) cuando cualquiera de tus clases necesite actuar de manera diferente a su
ancestro.

:Qué ocurre cuando una clase tiene dos ancestros que ofrecen la misma entidad y se encuentran en el mismo
nivel? En otras palabras, ;Qué se debe esperar cuando surge una clase usando herencia multiple? Miremos lo
siguiente.

Left:
var L
var_left “LL"
fun(self
"Left"
Right:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last

32?;;?2:022 info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

12:01

var = "R"
var_right "RR"
fun(self
"Right"

Sub(Left, Right

obj = Sub
obj.var, obj.var left, obj.var right, obj.fun

La clase Sub hereda todos los bienes de dos superclases Left y Right "

1)

estos nombres estan destinados a ser significativos). No hay duda de que la variable de clase var right proviene
de la clase Right, y var_left proviene de la clase Left respectivamente. Esto es claro. Pero, ;De donde proviene
la variable var? ;Es posible adivinarlo? El mismo problema se encuentra con el método fun() - ;Serd invocada
desde Left o desde Right? Ejecutemos el programa: la salida sera:

L LL RR Left

Esto prueba que ambos casos poco claros tienen una solucién dentro de la clase Left. jEs esta una premisa
suficiente para formular una regla general? Si lo es. Podemos decir que Python busca componentes de
objetos en el siguiente orden:

¢ Dentro del objeto mismo.
¢ En sus superclases, de abajo hacia arriba.
¢ Si hay mas de una clase en una ruta de herencia, Python las escanea de izquierda a derecha.

iNecesitas algo mas? Simplemente haz una pequefia enmienda en el coédigo, reemplaza:class Sub(Left, Right):
con: class Sub(Right, Left):, luego ejecuta el programa nuevamente y observa qué sucede. ;Qué ves ahora?
Vemos:

R LL RR Right

¢Ves lo mismo o algo diferente? === Cémo construir una jerarquia de clases Construir una jerarquia de clases
no es solo por amor al arte. Si divides un problema entre las clases y decides cual de ellas debe ubicarse en la
parte superior y cual debe ubicarse en la parte inferior de la jerarquia, debes analizar cuidadosamente el
problema, pero antes de mostrarte como hacerlo (y como no hacerlo), queremos resaltar un efecto interesante.
No es nada extraordinario (es solo una consecuencia de las reglas generales presentadas anteriormente), pero
recordarlo puede ser clave para comprender como funcionan algunos cédigos y cémo se puede usar este efecto
para construir un conjunto flexible de clases.

One:
do it(self
"do it de One"

doanything(self
self.do it

Two (One
do it(self

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

14/02/2026 17:18 55/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

“do it de Two"

one One
two Two

one.doanything
two.doanything

Analicémoslo:

¢ Existen dos clases llamadas One y Two, se entiende que Two es derivada de One. Nada especial. Sin
embargo, algo es notable: el método do it().

e Elmétodo do_it() esta definido dos veces: originalmente dentro de One posteriormente dentro de
Two. La esencia del ejemplo radica en el hecho de que es invocado solo una vez dentro de One.

La pregunta es: jcudl de los dos métodos sera invocado por las dos Ultimas lineas del cdédigo? La primera
invocacién parece ser simple, el invocar el método doanything() del objeto llamado one obviamente activara
el primero de los métodos. La segunda invocacidn necesita algo de atencién. También es simple si tienes en
cuenta cémo Python encuentra los componentes de la clase. La segunda invocacién ejecutara el método
do_it() en laforma existente dentro de la clase Two, independientemente del hecho de que la invocacién se
lleva a cabo dentro de la clase One. En efecto, el cddigo genera el siguiente resultado:

do it from One
do it from Two

Nota: la situacién en la cual la subclase puede modificar el comportamiento de su superclase (como en
el ejemplo) se llama poliformismo. La palabra proviene del griego (polys: «muchos, mucho» y morphe,
«forma, forma»), lo que significa que una misma clase puede tomar varias formas dependiendo de las
redefiniciones realizadas por cualquiera de sus subclases. El método, redefinido en cualquiera de las
superclases, que cambia el comportamiento de la superclase, se llama virtual. En otras palabras, ninguna clase
se da por hecho. El comportamiento de cada clase puede ser modificado en cualquier momento por cualquiera
de sus subclases. Te mostraremos como usar el poliformismo para extender la flexibilidad de la clase.

time

TrackedVehicle:
control track(left, stop

turn(left

control track(left, True
time.sleep

control track(left, False

WheeledVehicle:
turn_front wheels(left, on

turn(left

turn_front wheels(left, True
time.sleep

turn_front wheels(left, False

:Se parece a algo? Si, por supuesto que lo hace. Se refiere al ejemplo que se muestra al comienzo del médulo
cuando hablamos de los conceptos generales de la programacidn orientada a objetos. Puede parecer extrafio,
pero no utilizamos herencia en este ejemplo, solo queriamos mostrarte que no nos limita. Definimos dos clases

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last

(L;g?(?;fz:ozz info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

12:01

separadas capaces de producir dos tipos diferentes de vehiculos terrestres. La principal diferencia entre ellos
esta en como giran. Un vehiculo con ruedas solo gira las ruedas delanteras (generalmente). Un vehiculo oruga
tiene que detener una de las pistas. ;Puedes seguir el cddigo?

¢ Un vehiculo oruga realiza un giro deteniéndose y moviéndose en una de sus pistas (esto lo hace el
método control_track() el cual se implementard mas tarde).

¢ Un vehiculo con ruedas gira cuando sus ruedas delanteras giran (esto lo hace el método
turn_front_wheels()).

e El método turn() utiliza el método adecuado para cada vehiculo en particular.

iPuedes detectar el error del cédigo? Los métodos turn() son muy similares como para dejarlos en esta
forma. Vamos a reconstruir el céddigo: vamos a presentar una superclase para reunir todos los aspectos
similares de los vehiculos, trasladando todos los detalles a las subclases.

time

Vehicle:
change direction(left, on

turn(left

change direction(left, True
time.sleep

change direction(left, False

TrackedVehicle(Vehicle
control track(left, stop

change direction(left, on
control track(left, on

WheeledVehicle(Vehicle
turn_front wheels(left, on

change direction(left, on
turn front wheels(left, on

Esto es lo que hemos hecho:

¢ Definimos una superclase llamada Vehicle, la cual utiliza el método turn() para implementar un
esquema para poder girar, mientras que el giro en si es realizado por change _direction(); nota:
dicho método estd vacio, ya que vamos a poner todos los detalles en la subclase (dicho método a
menudo se denomina método abstracto, ya que solo demuestra alguna posibilidad que sera
instanciada mas tarde).

¢ Definimos una subclase llamada TrackedVehicle (nota: es derivada de la clase Vehicle) la cual instancia el
método change direction() utilizando el método denominado control track().

e Respectivamente, la subclase llamada WheeledVehicle hace lo mismo, pero usa el método
turn_front wheels() para obligar al vehiculo a girar.

La ventaja mas importante (omitiendo los problemas de legibilidad) es que esta forma de cédigo te permite
implementar un nuevo algoritmo de giro simplemente modificando el método turn(), lo cual se puede hacer en
un solo lugar, ya que todos los vehiculos lo obedeceran. Asi es como el el poliformismo ayuda al
desarrollador a mantener el cédigo limpio y consistente. La herencia no es la Unica forma de construir

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

14/02/2026 17:18 57/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

clases adaptables. Puedes lograr los mismos objetivos (no siempre, pero muy a menudo) utilizando una técnica
llamada composicién. La composicién es el proceso de componer un objeto usando otros objetos
diferentes. Los objetos utilizados en la composicidén entregan un conjunto de rasgos deseados (propiedades y/o
métodos), podemos decir que actlan como bloques utilizados para construir una estructura mas complicada.
Puede decirse que:

¢ La herencia extiende las capacidades de una clase agregando nuevos componentes y modificando
los existentes; en otras palabras, la receta completa estd contenida dentro de la clase misma y todos sus
ancestros; el objeto toma todas las pertenencias de la clase y las usa.

¢ La composicidn proyecta una clase como contenedor capaz de almacenar y usar otros objetos
(derivados de otras clases) donde cada uno de los objetos implementa una parte del comportamiento de
una clase.

Permitenos ilustrar la diferencia usando los vehiculos previamente definidos. El enfoque anterior nos condujo a
una jerarquia de clases en la que la clase mas alta conocia las reglas generales utilizadas para girar el vehiculo,
pero no sabia cémo controlar los componentes apropiados (ruedas o pistas). Las subclases implementaron esta
capacidad mediante la introduccién de mecanismos especializados. Hagamos (casi) lo mismo, pero usando
composicién. La clase, como en el ejemplo anterior, sabe cdmo girar el vehiculo, pero el giro real lo realiza un
objeto especializado almacenado en una propiedad llamada controlador. El controlador es capaz de controlar el
vehiculo manipulando las partes relevantes del vehiculo.

time
Tracks:
change direction(self, left, on
"pistas: ", left, on
Wheels:
change direction(self, left, on
"ruedas: ", left, on
Vehicle:

~_init (self, controller
self.controller controller

turn(self, left

self.controller.change direction(left, True
time.sleep

self.controller.change direction(left, False

wheeled Vehicle(Wheels
tracked Vehicle(Tracks

wheeled.turn(True
tracked.turn(False

Existen dos clases llamadas Tracks y Wheels, ellas saben como controlar la direccién del vehiculo. También hay
una clase llamada Vehicle que puede usar cualquiera de los controladores disponibles (los dos ya definidos o
cualquier otro definido en el futuro): el controlador se pasa a la clase durante la inicializacién. De esta manera,
la capacidad de giro del vehiculo se compone de un objeto externo, no implementado dentro de la clase
Vehicle. En otras palabras, tenemos un vehiculo universal y podemos instalar pistas o ruedas en él. El cédigo
produce el siguiente resultado:

ruedas: True True

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

pistas: True False
tracks: False True
tracks: False False

=== Herencia simple frente a herencia mdltiple Como ya sabes, no hay obstaculos para usar la herencia
multiple en Python. Puedes derivar cualquier clase nueva de mas de una clase definida previamente. Solo hay
un «pero». El hecho de que puedas hacerlo no significa que tengas que hacerlo. No olvides que:

¢ Una sola clase de herencia siempre es mas simple, segura y facil de entender y mantener.

¢ La herencia multiple siempre es arriesgada, ya que tienes muchas mas oportunidades de cometer un
error al identificar estas partes de las superclases que influirdn efectivamente en la nueva clase.

e La herencia multiple puede hacer que la anulacién sea extremadamente dificil; ademas, el emplear la
funcién super() se vuelve ambiguo.

¢ La herencia multiple viola el principio de responsabilidad tnica (mas detalles aqui:
https://en.wikipedia.org/wiki/Single_responsibility_principle) ya que forma una nueva clase de dos (0 mas)
clases que no saben nada una de la otra.

* Sugerimos encarecidamente la herencia multiple como la Gltima de todas las posibles soluciones: si
realmente necesitas las diferentes funcionalidades que ofrecen las diferentes clases, la composicién
puede ser una mejor alternativa.

=== ;Qué es el Orden de Resolucion de Métodos (MRO) y por qué no todas las herencias tienen sentido? MRO,
en general, es una forma (puedes llamarlo una estrategia) en la que un lenguaje de programacion en
particular escanea la parte superior de la jerarquia de una clase para encontrar el método que necesita
actualmente. Vale la pena enfatizar que los diferentes lenguajes usan MROs levemente (o incluso
completamente) diferentes. Python es Unico en este aspecto y sus costumbres son un poco especificas. Te
mostraremos cdmo funciona el MRO de Python en dos casos peculiares que son ejemplos claros de problemas
que pueden ocurrir cuando intentas usar la herencia multiple de manera demasiado imprudente. Comencemos
con un fragmento que inicialmente puede parecer simple.

Top:
m top(self
n top n

Middle(Top
m_middle(self
"middle"

Bottom(Middle
m bottom(self
"bottom"

object = Bottom
object.m bottom
object.m middle
object.m top

Estamos seguros de que si analizas el fragmento tu mismo, no verds ninguna anomalia en él. Si, tienes toda la
razén: parece claro y simple, y no genera preocupaciones. Si ejecutas el céddigo, producira el siguiente resultado
predecible:

bottom
middle

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

https://en.wikipedia.org/wiki/Single_responsibility_principle

14/02/2026 17:18 59/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

top
Sin sorpresas hasta ahora. Hagamos un pequefio cambio en este cddigo. Echa un vistazo:

Top:
m_top (self
Iltopll

Middle(Top
m middle(self
"middle"

Bottom(Middle, Top
m bottom(self
"bottom"

object = Bottom
object.m bottom
object.m middle
object.m top

iPuedes ver la diferencia? Estd escondida en esta linea:
Bottom(Middle, Top

De esta manera exdtica, hemos convertido un cédigo muy simple con una clara ruta de herencia Unica en un
misterioso acertijo de herencia mdltiple. «;Es valido?» Te puedes preguntar. Si lo es. «;Cémo es eso posible?»
te preguntas, esperamos que realmente sientas la necesidad de hacer esta pregunta. Como puedes ver, el
orden en el que se enumeran las dos superclases entre paréntesis cumple con la estructura del cddigo: la clase
Middle precede a la clase Top, justo como en la ruta de herencia real. A pesar de su rareza, la muestra es
correcta y funciona como se esperaba, pero debe indicarse que esta notacién no aporta ninguna funcionalidad
nueva ni significado adicional. Modifiguemos el cédigo una vez mas; ahora intercambiaremos ambos nombres
de superclase en la definicién de clase Bottom. Asi es como se ve el fragmento de cddigo ahora:

Top:
m_top(self
Il.topll

Middle(Top
m_middle(self
"middle"

Bottom(Top, Middle
m bottom(self
“bottom"

object = Bottom
object.m bottom
object.m middle
object.m top

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last

gg?;;fz:ozz info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

12:01

Para anticiparnos a tu pregunta, diremos que esta enmienda ha estropeado el cédigo y ya no se ejecutara. Qué
pena. El orden que intentamos forzar (Top, Middle) es incompatible con la ruta de herencia que se deriva de la
estructura del cédigo. A Python no le gustard. Esto es lo que veremos:

TypeError: Cannot create a consistent method resolution order (MRO) for bases Top,
Middle

Creemos que el mensaje habla por si solo. El MRO de Python no se puede doblar ni violar, no solo porque esa es
la forma en que funciona Python, sino también porque es una regla que debes obedecer. === El Problema del
Diamante El segundo ejemplo del espectro de problemas que posiblemente pueden surgir de la herencia
multiple esta ilustrado por un problema clasico llamado problema del diamante. El nombre refleja la forma
del diagrama de herencia; observa la imagen:

A

¢ Existe la superclase superior llamada A.

¢ Existen dos subclases derivadas de A: By C.

e También esta la subclase inferior llamada D, derivada de By C (0 Cy B, ya que estas dos variantes
significan cosas diferentes en Python).

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

https://miguelangel.torresegea.es/wiki/_detail/info:cursos:netacad:python:pe2m3:pasted:20220705-101421.png?id=info%3Acursos%3Anetacad%3Apython%3Ape2m3%3Afundamentosoop
https://miguelangel.torresegea.es/wiki/_detail/info:cursos:netacad:python:pe2m3:pasted:20220705-101421.png?id=info%3Acursos%3Anetacad%3Apython%3Ape2m3%3Afundamentosoop
https://miguelangel.torresegea.es/wiki/_detail/info:cursos:netacad:python:pe2m3:pasted:20220705-101421.png?id=info%3Acursos%3Anetacad%3Apython%3Ape2m3%3Afundamentosoop
https://miguelangel.torresegea.es/wiki/_detail/info:cursos:netacad:python:pe2m3:pasted:20220705-101421.png?id=info%3Acursos%3Anetacad%3Apython%3Ape2m3%3Afundamentosoop

14/02/2026 17:18 61/62 Modulo 3 (intermedio): Los conceptos basicos del enfoque orientado a objetos

;Puedes ver el diamante ahi?

A:

B(A):

C(A):

D(B, C

d=D

La misma estructura, pero expresada en Python. Algunos lenguajes de programacién no permiten la herencia
multiple en absoluto y, como consecuencia, no te permitirdn construir un diamante; este es el camino que Java
y C# han elegido seguir desde sus origenes. Python, sin embargo, ha elegido una ruta diferente: permite la
herencia multiple y no le importa si escribe y ejecuta cddigo como el del editor. Pero no te olvides del MRO:
siempre estd a cargo. Reconstruyamos nuestro ejemplo de la pagina anterior para hacerlo més parecido a un
diamante, como se muestra a continuacién:

Top:
m top(self
Iltopll

Middle Left(Top
m_middle(self
"middle left"

Middle Right(Top
m_middle(self
"middle right"

Bottom(Middle Left, Middle Right
m bottom(self
“bottom"

object = Bottom
object.m bottom
object.m middle
object.m top

Nota: ambas clases Middle definen un método con el mismo nombre: m middle(). Introduce una pequefa
incertidumbre en nuestra muestra, aunque estamos absolutamente seguros de que puedes responder la
siguiente pregunta clave: ;cudl de los dos métodos m_middle() se invocara realmente cuando la siguiente
linea se ejecute?

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last

32?57%022 info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

12:01

Object.m middle

En otras palabras, qué verds en la pantalla: middle left o middle right? No es necesario que te apresures,
ipiénselo dos veces y toma en cuenta el MRO de Python! jEstas listo? Si, tienes razén. La invocacién activara el
método m _middle(), que proviene de la clase Middle Left. La explicacién es simple: la clase aparece antes de
Middle Right en la lista de herencia de la clase Bottom. Si deseas asegurarte de que no haya dudas al respecto,
intenta intercambiar estas dos clases en la lista y verifica los resultados. Si deseas experimentar algunas
impresiones mas profundas sobre la herencia multiple y las piedras preciosas, intenta modificar nuestro
fragmento y equipar la clase Upper con otro espécimen del métodom middle () e investigua su
comportamiento detenidamente. Como puedes ver, los diamantes pueden traer algunos problemas a tu vida,
tanto los reales como los que ofrece Python.

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

Last update: 05/07/2022 12:01

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

	Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos
	Enfoque procedimental frente al enfoque orientado a objetos
	Jerarquías de clase
	¿Qué es un objeto?
	Herencia
	¿Qué contiene un objeto?
	Tu primera clase
	Tu primer objeto
	Puntos Clave
	¿Qué es una pila?
	La pila: el enfoque procedimental
	La pila: el enfoque procedimental frente al enfoque orientado a objetos
	La pila, el enfoque orientado a objetos
	El enfoque orientado a objetos: una pila desde cero
	Puntos Clave
	ejercicio
	Objetivos
	Escenario

	ejercicio
	Objetivos
	Escenario

	ejercicio
	Objetivos
	Escenario

	Variables de instancia
	Variables de clase
	Comprobando la existencia de un atributo
	Puntos Clave
	Métodos a detalle
	La vida interna de clases y objetos
	Reflexión e introspección
	Investigando Clases
	Puntos Clave
	ejercicio
	Objetivos
	Escenario

	ejercicio
	Objetivos
	Escenario

	Objetivos
	Escenario

	ejercicio
	Objetivos
	Escenario

	Herencia: ¿por qué y cómo?
	Herencia: issubclass()
	Herencia: isinstance()
	Herencia: el operador is
	Cómo Python encuentra propiedades y métodos

