
14/02/2026 17:18 1/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Modulo 3 (intermedio): Los conceptos básicos del
enfoque orientado a objetos

Demos un paso fuera de la programación y las computadoras, y analicemos temas de programación orientada a
objetos.

Casi todos los programas y técnicas que has utilizado hasta ahora pertenecen al estilo de programación
procedimental. Es cierto que has utilizado algunos objetos incorporados, pero cuando nos referimos a ellos, se
mencionan lo mínimo posible.

La programación procedimental fue el enfoque dominante para el desarrollo de software durante décadas de TI,
y todavía se usa en la actualidad. Además, no va a desaparecer en el futuro, ya que funciona muy bien para
proyectos específicos (en general, no muy complejos y no grandes, pero existen muchas excepciones a esa
regla).

El enfoque orientado a objetos es bastante joven (mucho más joven que el enfoque procedimental) y es
particularmente útil cuando se aplica a proyectos grandes y complejos llevados a cabo por grandes equipos
formados por muchos desarrolladores.

Este tipo de programación en un proyecto facilita muchas tareas importantes, por ejemplo, dividir el proyecto
en partes pequeñas e independientes y el desarrollo independiente de diferentes elementos del proyecto.

Python es una herramienta universal para la programación procedimental y orientada a objetos. Se
puede utilizar con éxito en ambos enfoques.

Además, puedes crear muchas aplicaciones útiles, incluso si no se sabe nada sobre clases y objetos, pero debes
tener en cuenta que algunos de los problemas (por ejemplo, el manejo de la interfaz gráfica de usuario) puede
requerir un enfoque estricto de objetos.

Afortunadamente, la programación orientada a objetos es relativamente simple.

Enfoque procedimental frente al enfoque orientado a objetos

En el enfoque procedimental, es posible distinguir dos mundos diferentes y completamente separados: el
mundo de los datos y el mundo del código. El mundo de los datos está poblado con variables de diferentes
tipos, mientras que el mundo del código está habitado por códigos agrupados en módulos y funciones.

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

Las funciones pueden usar datos, pero no al revés. Además, las funciones pueden abusar de los datos, es decir,
usar el valor de manera no autorizada (por ejemplo, cuando la función seno recibe el saldo de una cuenta
bancaria como parámetro).

Los datos no pueden usar funciones. ¿Pero es esto completamente cierto? ¿Hay algunos tipos especiales de
datos que puedan usar funciones?

Sí, los hay, los llamados métodos. Estas son funciones que se invocan desde dentro de los datos, no junto con
ellos. Si puedes ver esta distinción, has dado el primer paso en la programación de objetos.

El enfoque orientado a objetos sugiere una forma de pensar completamente diferente. Los datos y el código
están encapsulados juntos en el mismo mundo, divididos en clases.

Cada clase es como una receta que se puede usar cuando quieres crear un objeto útil. Puedes
producir tantos objetos como necesites para resolver tu problema.

Cada objeto tiene un conjunto de rasgos (se denominan propiedades o atributos; usaremos ambas palabras
como sinónimos) y es capaz de realizar un conjunto de actividades (que se denominan métodos).

Las recetas pueden modificarse si son inadecuadas para fines específicos y, en efecto, pueden crearse nuevas
clases. Estas nuevas clases heredan propiedades y métodos de los originales, y generalmente agregan algunos
nuevos, creando nuevas herramientas más específicas.

Los objetos son encarnaciones de las ideas expresadas en clases, como un pastel de queso en tu plato, es
una encarnación de la idea expresada en una receta impresa en un viejo libro de cocina.

Los objetos interactúan entre sí, intercambian datos o activan sus métodos. Una clase construida
adecuadamente (y, por lo tanto, sus objetos) puede proteger los datos sensibles y ocultarlos de modificaciones
no autorizadas.

No existe un límite claro entre los datos y el código: viven como uno solo dentro de los objetos.

Todos estos conceptos no son tan abstractos como pudieras pensar al principio. Por el contrario, todos están
tomados de experiencias de la vida real y, por lo tanto, son extremadamente útiles en la programación de
computadoras: no crean vida artificial reflejan hechos reales, relaciones y circunstancias.

Jerarquías de clase

La palabra clases tiene muchos significados, pero no todos son compatibles con las ideas que queremos discutir
aquí. La clase que nos concierne es como una categoría, como resultado de similitudes definidas con precisión.

Intentaremos señalar algunas clases que son buenos ejemplos de este concepto.

14/02/2026 17:18 3/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Veamos por un momento los vehículos. Todos los vehículos existentes (y los que aún no existen) están
relacionados por una sola característica importante: la capacidad de moverse. Puedes argumentar que
un perro también se mueve; ¿Es un perro un vehículo? No lo es. Tenemos que mejorar la definición, es decir,
enriquecerla con otros criterios, distinguir los vehículos de otros seres y crear una conexión más fuerte.
Consideremos las siguientes circunstancias: los vehículos son entidades creadas artificialmente que se utilizan
para el transporte, movidos por fuerzas de la naturaleza y dirigidos (conducidos) por humanos.

Según esta definición, un perro no es un vehículo.

La clase Vehículos es muy amplia. Tenemos que definir clases especializadas. Las clases especializadas son las
subclases. La clase Vehículos será una superclase para todas ellas.

Nota: la jerarquía crece de arriba hacia abajo, como raíces de árboles, no ramas. La clase más general
y más amplia siempre está en la parte superior (la superclase) mientras que sus descendientes se encuentran
abajo (las subclases).

A estas alturas, probablemente puedas señalar algunas subclases potenciales para la superclase Vehículos. Hay
muchas clasificaciones posibles. Elegimos subclases basadas en el medio ambiente y decimos que hay (al
menos) cuatro subclases:

Vehículos Terrestres.
Vehículos Acuáticos.
Vehículos Aéreos.
Vehículos Espaciales.

En este ejemplo, discutiremos solo la primera subclase: Vehículos Terrestres. Si lo deseas, puedes continuar con
las clases restantes.

Los vehículos terrestres pueden dividirse aún más, según el método con el que impactan el suelo. Entonces,
podemos enumerar:

Vehículos con ruedas.
Vehículos oruga.
Aerodeslizadores.

La figura ilustra la jerarquía que hemos creado.

Ten en cuenta la dirección de las flechas: siempre apuntan a la superclase. La clase de nivel superior es una
excepción: no tiene su propia superclase.

Otro ejemplo es la jerarquía del reino taxonómico de los animales.

Podemos decir que todos los Animales (nuestra clase de nivel superior) se puede dividir en cinco subclases:

Mamíferos.

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

Reptiles.
Aves.
Peces.
Anfibios.

Tomaremos el primero para un análisis más detallado.

Hemos identificado las siguientes subclases:

Mamíferos Salvajes.
Mamíferos Domesticados.

Intenta extender la jerarquía de la forma que quieras y encuentra el lugar adecuado para los humanos.

¿Qué es un objeto?

Una clase (entre otras definiciones) es un conjunto de objetos. Un objeto es un ser perteneciente a una
clase.

Un objeto es una encarnación de los requisitos, rasgos y cualidades asignados a una clase específica.
Esto puede sonar simple, pero ten en cuenta las siguientes circunstancias importantes. Las clases forman una
jerarquía.

Esto puede significar que un objeto que pertenece a una clase específica pertenece a todas las superclases al
mismo tiempo. También puede significar que cualquier objeto perteneciente a una superclase puede no
pertenecer a ninguna de sus subclases.

Por ejemplo: cualquier automóvil personal es un objeto que pertenece a la clase Vehículos Terrestres. También
significa que el mismo automóvil pertenece a todas las superclases de su clase local; por lo tanto, también es
miembro de la clase Vehículos.

Tu perro (o tu gato) es un objeto incluido en la clase Mamíferos Domesticados, lo que significa explícitamente
que también está incluido en la clase Animales.

Cada subclase es más especializada (o más específica) que su superclase. Por el contrario, cada superclase
es más general (más abstracta) que cualquiera de sus subclases.

Ten en cuenta que hemos supuesto que una clase solo puede tener una superclase; esto no siempre es cierto,
pero discutiremos este tema más adelante.

14/02/2026 17:18 5/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Herencia

Definamos uno de los conceptos fundamentales de la programación de objetos, llamado herencia. Cualquier
objeto vinculado a un nivel específico de una jerarquía de clases hereda todos los rasgos (así como los
requisitos y cualidades) definidos dentro de cualquiera de las superclases.

La clase de inicio del objeto puede definir nuevos rasgos (así como requisitos y cualidades) que serán
heredados por cualquiera de sus superclases.

No deberías tener ningún problema para hacer coincidir esta regla con ejemplos específicos, ya sea que se
aplique a animales o vehículos.

¿Qué contiene un objeto?

La programación orientada a objetos supone que cada objeto existente puede estar equipado con tres
grupos de atributos:

Un objeto tiene un nombre que lo identifica de forma exclusiva dentro de su namespace (aunque
también puede haber algunos objetos anónimos).
Un objeto tiene un conjunto de propiedades individuales que lo hacen original, único o sobresaliente
(aunque es posible que algunos objetos no tengan propiedades).
Un objeto tiene un conjunto de habilidades para realizar actividades específicas, capaz de
cambiar el objeto en sí, o algunos de los otros objetos.

Existe una pista (aunque esto no siempre funciona) que te puede ayudar a identificar cualquiera de las tres
esferas anteriores. Cada vez que se describe un objeto y se usa:

Un sustantivo: probablemente se está definiendo el nombre del objeto.
Un adjetivo: probablemente se está definiendo una propiedad del objeto.
Un verbo: probablemente se está definiendo una actividad del objeto.

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

Dos ejemplos deberían servir como un buen ejemplo:

Un Cadillac rosa pasó rápidamente.
Nombre del objeto = Cadillac
Clase = Vehículos con ruedas
Propiedad = Color (rosa)
Actividad = Pasar (rápidamente)

Max es un gato grande que duerme todo el día.
Nombre del objeto = Max
Clase = Gato
Propiedad = Tamaño (Grande)
Actividad = Dormir (Todo el día)

Tu primera clase

La programación orientada a objetos es el arte de definir y expandir clases. Una clase es un modelo de una
parte muy específica de la realidad, que refleja las propiedades y actividades que se encuentran en el mundo
real.

Las clases definidas al principio son demasiado generales e imprecisas para cubrir el mayor número posible de
casos reales.

No hay obstáculo para definir nuevas subclases más precisas. Heredarán todo de su superclase, por lo que el
trabajo que se utilizó para su creación no se desperdicia.

La nueva clase puede agregar nuevas propiedades y nuevas actividades y, por lo tanto, puede ser más útil en
aplicaciones específicas. Obviamente, se puede usar como una superclase para cualquier número de subclases
recién creadas.

El proceso no necesita tener un final. Puedes crear tantas clases como necesites.

La clase que se define no tiene nada que ver con el objeto: la existencia de una clase no significa que
ninguno de los objetos compatibles se creará automáticamente. La clase en sí misma no puede crear un
objeto: debes crearlo tu mismo y Python te permite hacerlo.

Es hora de definir la clase más simple y crear un objeto. Analiza el siguiente ejemplo:

<code python>class TheSimplestClass:

14/02/2026 17:18 7/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

 pass

</code>

Hemos definido una clase. La clase es bastante pobre: no contiene propiedades ni actividades. Esta vacía, pero
eso no importa por ahora. Cuanto más simple sea la clase, mejor para nuestros propósitos.

La definición comienza con la palabra clave reservada class. La palabra clave reservada es seguida por
un identificador que le dará nombre a la clase (nota: no lo confundas con el nombre del objeto: estas son
dos cosas diferentes).

A continuación, se agregan dos puntos (:), como clases, como funciones, forman su propio bloque anidado. El
contenido dentro del bloque define todas las propiedades y actividades de la clase.

La palabra clave reservada pass llena la clase con nada. No contiene ningún método ni propiedades.

Tu primer objeto

La clase recién definida se convierte en una herramienta que puede crear nuevos objetos. La herramienta debe
usarse explícitamente, bajo demanda.

Imagina que deseas crear un objeto (exactamente uno) de la clase TheSimplestClass.

Para hacer esto, debes asignar una variable para almacenar el objeto recién creado de esa clase y crear un
objeto al mismo tiempo.

Se hace de la siguiente manera:

my_first_object = TheSimplestClass()

Nota:

El nombre de la clase intenta fingir que es una función, ¿puedes ver esto? Lo discutiremos pronto.
El objeto recién creado está equipado con todo lo que trae la clase. Como esta clase está completamente
vacía, el objeto también está vacío.

El acto de crear un objeto de la clase seleccionada también se llama instanciación (ya que el objeto se
convierte en una instancia de la clase).

Dejemos las clases en paz por un breve momento, ya que ahora diremos algunas palabras sobre pilas. Sabemos
que el concepto de clases y objetos puede no estar completamente claro todavía. No te preocupes, te
explicaremos todo muy pronto.

Puntos Clave

1. Una clase es una idea (más o menos abstracta) que se puede utilizar para crear varias encarnaciones; una
encarnación de este tipo se denomina objeto.

2. Cuando una clase se deriva de otra clase, su relación se denomina herencia. La clase que deriva de la otra
clase se denomina subclase. El segundo lado de esta relación se denomina superclase. Una forma de presentar
dicha relación es en un diagrama de herencia, donde:

Las superclases siempre se presentan encima de sus subclases.
Las relaciones entre clases se muestran como flechas dirigidas desde la subclase hacia su superclase.

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

3. Los objetos están equipados con:

Un nombre que los identifica y nos permite distinguirlos.
Un conjunto de propiedades (el conjunto puede estar vacío).
Un conjunto de métodos (también puede estar vacío).

4. Para definir una clase de Python,se necesita usar la palabra clave reservada class. Por ejemplo:

class This_Is_A_Class:
 pass

5. Para crear un objeto de la clase previamente definida, se necesita usar la clase como si fuera una función. Por
ejemplo:

this_is_an_object = This_Is_A_Class()

¿Qué es una pila?

Una pila es una estructura desarrollada para almacenar datos de una manera muy específica.
Imagina una pila de monedas. No puedes poner una moneda en ningún otro lugar sino en la parte superior de la
pila.

Del mismo modo, no puedes sacar una moneda de la pila desde ningún lugar que no sea la parte superior de la
pila. Si deseas obtener la moneda que se encuentra en la parte inferior, debes eliminar todas las monedas de
los niveles superiores.

El nombre alternativo para una pila (pero solo en la terminología de TI) es UEPS (LIFO son sus siglas en
inglés).

Es una abreviatura para una descripción muy clara del comportamiento de la pila: Último en Entrar - Primero
en Salir (Last In - First Out). La moneda que quedó en último lugar en la pila saldrá primero.

Una pila es un objeto con dos operaciones elementales, denominadas convencionalmente push (cuando un
nuevo elemento se coloca en la parte superior) y pop (cuando un elemento existente se retira de la parte
superior).

Las pilas se usan muy a menudo en muchos algoritmos clásicos, y es difícil imaginar la implementación de
muchas herramientas ampliamente utilizadas sin el uso de pilas.

14/02/2026 17:18 9/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Implementemos una pila en Python. Esta será una pila muy simple, y te mostraremos como hacerlo en dos
enfoques independientes: de manera procedimental y orientado a objetos.

La pila: el enfoque procedimental

Primero, debes decidir como almacenar los valores que llegarán a la pila. Sugerimos utilizar el método más
simple, y emplear una lista para esta tarea. Supongamos que el tamaño de la pila no está limitado de ninguna
manera. Supongamos también que el último elemento de la lista almacena el elemento superior.

La pila en sí ya está creada:

stack = []

Estamos listos para definir una función que coloca un valor en la pila. Aquí están las presuposiciones para
ello:

El nombre para la función es push.
La función obtiene un parámetro (este es el valor que se debe colocar en la pila).
La función no retorna nada.
La función agrega el valor del parámetro al final de la pila.

Así es como lo hemos hecho, echa un vistazo:

def push(val):
 stack.append(val)

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

Ahora es tiempo de que una función quite un valor de la pila. Así es como puedes hacerlo:

El nombre de la función es pop.
La función no obtiene ningún parámetro.
La función devuelve el valor tomado de la pila.
La función lee el valor de la parte superior de la pila y lo elimina.

La función esta aqui:

def pop():
 val = stack[-1]
 del stack[-1]
 return val

Nota: la función no verifica si hay algún elemento en la pila.

Armemos todas las piezas juntas para poner la pila en movimiento. El programa completo empuja (push) tres
números a la pila, los saca e imprime sus valores en pantalla.

stack = []

def push(val):
 stack.append(val)

def pop():
 val = stack[-1]
 del stack[-1]
 return val

push(3)
push(2)
push(1)

print(pop())
print(pop())
print(pop())

El programa muestra el siguiente texto en pantalla:

1
2
3

La pila: el enfoque procedimental frente al enfoque orientado a
objetos

La pila procedimental está lista. Por supuesto, hay algunas debilidades, y la implementación podría mejorarse
de muchas maneras (aprovechar las excepciones es una buena idea), pero en general la pila está
completamente implementada, y puedes usarla si lo necesitas.

14/02/2026 17:18 11/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Pero cuanto más la uses, más desventajas encontrarás. Éstas son algunas de ellas:

La variable esencial (la lista de la pila) es altamente vulnerable; cualquiera puede modificarla de forma
incontrolable, destruyendo la pila; esto no significa que se haya hecho de manera maliciosa; por el
contrario, puede ocurrir como resultado de un descuido, por ejemplo, cuando alguien confunde nombres
de variables; imagina que accidentalmente has escrito algo como esto:

stack[0] = 0

El funcionamiento de la pila estará completamente desorganizado.

También puede suceder que un día necesites más de una pila; tendrás que crear otra lista para el
almacenamiento de la pila, y probablemente otras funciones push y pop.
También puede suceder que no solo necesites funciones push y pop, pero también algunas otras
funciones; ciertamente podrías implementarlas, pero intenta imaginar qué sucedería si tuvieras docenas
de pilas implementadas por separado.

El enfoque orientado a objetos ofrece soluciones para cada uno de los problemas anteriores. Vamos a
nombrarlos primero:

La capacidad de ocultar (proteger) los valores seleccionados contra el acceso no autorizado se llama
encapsulamiento; no se puede acceder a los valores encapsulados ni modificarlos si deseas
utilizarlos exclusivamente.
Cuando tienes una clase que implementa todos los comportamientos de pila necesarios, puedes producir
tantas pilas como desees; no necesitas copiar ni replicar ninguna parte del código.
La capacidad de enriquecer la pila con nuevas funciones proviene de la herencia; puedes crear una
nueva clase (una subclase) que herede todos los rasgos existentes de la superclase y agregar algunos
nuevos.

Ahora escribamos una nueva implementación de pila desde cero. Esta vez, utilizaremos el enfoque orientado a
objetos, que te guiará paso a paso en el mundo de la programación de objetos.

La pila, el enfoque orientado a objetos

Por supuesto, la idea principal sigue siendo la misma. Usaremos una lista como almacenamiento de la pila. Solo
tenemos que saber como poner la lista en la clase.

Comencemos desde el principio: así es como comienza la pila orientada a objetos:

class Stack:

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

Ahora, esperamos dos cosas de la clase:

Queremos que la clase tenga una propiedad como el almacenamiento de la pila, tenemos que
«instalar» una lista dentro de cada objeto de la clase (nota: cada objeto debe tener su propia lista;
la lista no debe compartirse entre diferentes pilas).
Despues, queremos que la lista esté oculta de la vista de los usuarios de la clase.

¿Cómo se hace esto?

A diferencia de otros lenguajes de programación, Python no tiene medios para permitirte declarar una
propiedad como esa.

En su lugar, debes agregar una instrucción específica. Las propiedades deben agregarse a la clase
manualmente.

¿Cómo garantizar que dicha actividad tiene lugar cada vez que se crea una nueva pila?

Existe una manera simple de hacerlo, tienes que equipar a la clase con una función específica:

Tiene que ser nombrada de forma estricta.
Se invoca implícitamente cuando se crea el nuevo objeto.

Dicha función es llamada el constructor, ya que su propósito general es construir un nuevo objeto. El
constructor debe saber todo acerca de la estructura del objeto y debe realizar todas las inicializaciones
necesarias.

Agreguemos un constructor muy simple a la nueva clase. Echa un vistazo al código:

class Stack:
 def __init__(self):
 print("¡Hola!")

stack_object = Stack()

Expliquemos más a detalle:

El nombre del constructor es siempre __init__.
Tiene que tener al menos un parámetro (discutiremos esto más adelante); el parámetro se usa para
representar el objeto recién creado: puedes usar el parámetro para manipular el objeto y enriquecerlo
con las propiedades necesarias; harás uso de esto pronto.
Nota: el parámetro obligatorio generalmente se denomina self, es solo una sugerencía, pero deberías
seguirla, simplifica el proceso de lectura y comprensión de tu código.

class Stack: # Definiendo la clase de la pila.
 def __init__(self): # Definiendo la función del constructor.
 print("¡Hola!")

stack_object = Stack() # Instanciando el objeto.

Aquí está su salida:

¡Hola!

Nota: no hay rastro de la invocación del constructor dentro del código. Ha sido invocado implícita y

14/02/2026 17:18 13/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

automáticamente. Hagamos uso de eso ahora.

Cualquier cambio que realices dentro del constructor que modifique el estado del parámetro self se verá
reflejado en el objeto recien creado.

Esto significa que puedes agregar cualquier propiedad al objeto y la propiedad permanecerá allí hasta que el
objeto termine su vida o la propiedad se elimine explícitamente.

Ahora agreguemos solo una propiedad al nuevo objeto, una lista para la pila. La nombraremos stack_list.

class Stack:
 def __init__(self):
 self.stack_list = []

stack_object = Stack()
print(len(stack_object.stack_list))

Nota:

Hemos usado la notación punteada, al igual que cuando se invocan métodos. Esta es la manera
general para acceder a las propiedades de un objeto: debes nombrar el objeto, poner un punto (.)
después de el, y especificar el nombre de la propiedad deseada, ¡no uses paréntesis! No deseas invocar
un método, deseas acceder a una propiedad.
Si estableces el valor de una propiedad por primera vez (como en el constructor), lo estás creando; a
partir de ese momento, el objeto tiene la propiedad y está listo para usar su valor.
Hemos hecho algo más en el código: hemos intentado acceder a la propiedad stack_list desde fuera de la
clase inmediatamente después de que se haya creado el objeto; queremos verificar la longitud actual de
la pila, ¿lo hemos logrado?

Si, por supuesto: el código produce el siguiente resultado:

0

Esto no es lo que queremos de la pila. Nosotros queremos que stack_list este escondida del mundo exterior. ¿Es
eso posible?

Si, y es simple, pero no muy intuitivo.

Echa un vistazo: hemos agregado dos guiones bajos antes del nombre stack_list, nada mas:

class Stack:
 def __init__(self):
 self.__stack_list = []

stack_object = Stack()
print(len(stack_object.__stack_list))

El cambio invalida el programa.

¿Por qué?

Cuando cualquier componente de la clase tiene un nombre que comienza con dos guiones bajos (__), se
vuelve privado, esto significa que solo se puede acceder desde dentro de la clase.

No puedes verlo desde el mundo exterior. Así es como Python implementa el concepto de encapsulación.

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

Ejecuta el programa para probar nuestras suposiciones: una excepción AttributeError debe ser generada.

El enfoque orientado a objetos: una pila desde cero

Ahora es el momento de que las dos funciones (métodos) implementen las operaciones push y pop. Python
supone que una función de este tipo debería estar inmersa dentro del cuerpo de la clase, como el
constructor.

Queremos invocar estas funciones para agregar(push) y quitar(pop) valores de la pila. Esto significa que ambos
deben ser accesibles para el usuario de la clase (en contraste con la lista previamente construida, que está
oculta para los usuarios de la clase ordinaria).

Tal componente es llamado público, por ello no puede comenzar su nombre con dos (o más) guiones
bajos. Hay un requisito más el nombre no debe tener más de un guión bajo.

Las funciones en sí son simples. Echa un vistazo:

class Stack:
 def __init__(self):
 self.__stack_list = []

 def push(self, val):
 self.__stack_list.append(val)

 def pop(self):
 val = self.__stack_list[-1]
 del self.__stack_list[-1]
 return val

stack_object = Stack()

stack_object.push(3)
stack_object.push(2)
stack_object.push(1)

print(stack_object.pop())
print(stack_object.pop())
print(stack_object.pop())

Sin embargo, hay algo realmente extraño en el código. Las funciones parecen familiares, pero tienen más
parámetros que sus contrapartes procedimentales.

Aquí, ambas funciones tienen un parámetro llamado self en la primera posición de la lista de parámetros.

¿Es necesario? Si, lo es.

Todos los métodos deben tener este parámetro. Desempeña el mismo papel que el primer parámetro
constructor.

Permite que el método acceda a entidades (propiedades y actividades / métodos) del objeto. No
puedes omitirlo. Cada vez que Python invoca un método, envía implícitamente el objeto actual como el primer
argumento.

14/02/2026 17:18 15/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Esto significa que el método está obligado a tener al menos un parámetro, que Python mismo utiliza,
no tienes ninguna influencia sobre el.

Si tu método no necesita ningún parámetro, este debe especificarse de todos modos. Si está diseñado para
procesar solo un parámetro, debes especificar dos, ya que la función del primero sigue siendo la misma.

Hay una cosa más que requiere explicación: la forma en que se invocan los métodos desde la variable
__stack_list.

Afortunadamente, es mucho más simple de lo que parece:

La primera etapa entrega el objeto como un todo → self.
A continuación, debes llegar a la lista __stack_list → self.__stack_list.
Con __stack_list lista para ser usada, puedes realizar el tercer y último paso →
self.__stack_list.append(val).

La declaración de la clase está completa y se han enumerado todos sus componentes. La clase está lista para
usarse.

Tener tal clase abre nuevas posibilidades. Por ejemplo, ahora puedes hacer que más de una pila se comporte de
la misma manera. Cada pila tendrá su propia copia de datos privados, pero utilizará el mismo conjunto de
métodos.

Esto es exactamente lo que queremos para este ejemplo.

Analiza el código:

class Stack:
 def __init__(self):
 self.__stack_list = []

 def push(self, val):
 self.__stack_list.append(val)

 def pop(self):
 val = self.__stack_list[-1]
 del self.__stack_list[-1]
 return val

stack_object_1 = Stack()
stack_object_2 = Stack()

stack_object_1.push(3)
stack_object_2.push(stack_object_1.pop())

print(stack_object_2.pop())

Existen dos pilas creadas a partir de la misma clase base. Trabajan independientemente. Puedes crear
más si quieres.

Ejecuta el código en el editor y observa que sucede. Realiza tus propios experimentos.

Analiza el fragmento de código a continuación: hemos creado tres objetos de la clase Stack. Después, hemos
hecho malabarismos. Intenta predecir el valor que se muestra en la pantalla.

class Stack:

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

 def __init__(self):
 self.__stack_list = []

 def push(self, val):
 self.__stack_list.append(val)

 def pop(self):
 val = self.__stack_list[-1]
 del self.__stack_list[-1]
 return val

little_stack = Stack()
another_stack = Stack()
funny_stack = Stack()

little_stack.push(1)
another_stack.push(little_stack.pop() + 1)
funny_stack.push(another_stack.pop() - 2)

print(funny_stack.pop())

Ahora vamos un poco mas lejos. Vamos a agregar una nueva clase para manejar pilas.

La nueva clase debería poder evaluar la suma de todos los elementos almacenados actualmente en la
pila.

No queremos modificar la pila previamente definida. Ya es lo suficientemente buena en sus aplicaciones, y no
queremos que cambie de ninguna manera. Queremos una nueva pila con nuevas capacidades. En otras
palabras, queremos construir una subclase de la ya existente clase Stack.

El primer paso es fácil: solo define una nueva subclase que apunte a la clase que se usará como
superclase.

Así es como se ve:

class AddingStack(Stack):
 pass

La clase aún no define ningún componente nuevo, pero eso no significa que esté vacía. Obtiene (hereda)
todos los componentes definidos por su superclase, el nombre de la superclase se escribe después de los
dos puntos, después del nombre de la nueva clase.

Esto es lo que queremos de la nueva pila:

Queremos que el método push no solo inserte el valor en la pila, sino que también sume el valor a la
variable sum.
Queremos que la función pop no solo extraiga el valor de la pila, sino que también reste el valor de la
variable sum.

En primer lugar, agreguemos una nueva variable a la clase. Será una variable privada, al igual que la lista de
pila. No queremos que nadie manipule el valor de la variable sum.

Como ya sabes, el constructor agrega una nueva propiedad a la clase. Ya sabes como hacerlo, pero hay algo
realmente intrigante dentro del constructor. Echa un vistazo:

14/02/2026 17:18 17/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

class AddingStack(Stack):
 def __init__(self):
 Stack.__init__(self)
 self.__sum = 0

La segunda línea del cuerpo del constructor crea una propiedad llamada __sum, almacenará el total de todos
los valores de la pila.

Pero la línea anterior se ve diferente. ¿Qué hace? ¿Es realmente necesaria? Sí lo es.

Al contrario de muchos otros lenguajes, Python te obliga a invocar explícitamente el constructor de una
superclase. Omitir este punto tendrá efectos nocivos: el objeto se verá privado de la lista __stack_list. Tal pila
no funcionará correctamente.

Esta es la única vez que puedes invocar a cualquiera de los constructores disponibles explícitamente; se puede
hacer dentro del constructor de la superclase.

Ten en cuenta la sintaxis:

Se especifica el nombre de la superclase (esta es la clase cuyo constructor se desea ejecutar).
Se pone un punto (.) después del nombre.
Se especifica el nombre del constructor.
Se debe señalar al objeto (la instancia de la clase) que debe ser inicializado por el constructor; es por eso
que se debe especificar el argumento y utilizar la variable self aquí; recuerda: invocar cualquier
método (incluidos los constructores) desde fuera de la clase nunca requiere colocar el
argumento self en la lista de argumentos, invocar un método desde dentro de la clase exige el uso
explícito del argumento self, y tiene que ser el primero en la lista.

Nota: generalmente es una práctica recomendada invocar al constructor de la superclase antes de cualquier
otra inicialización que desees realizar dentro de la subclase. Esta es la regla que hemos seguido en el código.

En segundo lugar, agreguemos dos métodos. Pero, ¿realmente estamos agregándolos? Ya tenemos estos
métodos en la superclase. ¿Podemos hacer algo así?

Si podemos. Significa que vamos a cambiar la funcionalidad de los métodos, no sus nombres. Podemos
decir con mayor precisión que la interfaz (la forma en que se manejan los objetos) de la clase permanece igual
al cambiar la implementación al mismo tiempo.

Comencemos con la implementación de la función push. Esto es lo que esperamos de la función:

Agregar el valor a la variable __sum.
Agregar el valor a la pila.

Nota: la segunda actividad ya se implementó dentro de la superclase, por lo que podemos usarla. Además,
tenemos que usarla, ya que no hay otra forma de acceder a la variable __stackList.

Así es como se mira el método push dentro de la subclase:

def push(self, val):
 self.__sum += val
 Stack.push(self, val)

Toma en cuenta la forma en que hemos invocado la implementación anterior del método push (el disponible en
la superclase):

Tenemos que especificar el nombre de la superclase; esto es necesario para indicar claramente la clase
que contiene el método, para evitar confundirlo con cualquier otra función del mismo nombre.
Tenemos que especificar el objeto de destino y pasarlo como primer argumento (no se agrega

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

implícitamente a la invocación en este contexto).

Se dice que el método push ha sido anulado, el mismo nombre que en la superclase ahora representa una
funcionalidad diferente.

Esta es la nueva función pop:

def pop(self):
 val = Stack.pop(self)
 self.__sum -= val
 return val

Hasta ahora, hemos definido la variable __sum, pero no hemos proporcionado un método para obtener su valor.
Parece estar escondido. ¿Cómo podemos mostrarlo y que al mismo tiempo que se proteja de modificaciones?

Tenemos que definir un nuevo método. Lo nombraremos get_sum. Su única tarea será devolver el valor
de __sum.

Aquí está:

def get_sum(self):
 return self.__sum

Entonces, veamos el programa en el editor. El código completo de la clase está ahí. Podemos ahora verificar su
funcionamiento, y lo hacemos con la ayuda de unas pocas líneas de código adicionales.

Como puedes ver, agregamos cinco valores subsiguientes en la pila, imprimimos su suma y los sacamos todos
de la pila.

class Stack:
 def __init__(self):
 self.__stack_list = []

 def push(self, val):
 self.__stack_list.append(val)

 def pop(self):
 val = self.__stack_list[-1]
 del self.__stack_list[-1]
 return val

class AddingStack(Stack):
 def __init__(self):
 Stack.__init__(self)
 self.__sum = 0

 def get_sum(self):
 return self.__sum

 def push(self, val):
 self.__sum += val
 Stack.push(self, val)

 def pop(self):

14/02/2026 17:18 19/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

 val = Stack.pop(self)
 self.__sum -= val
 return val

stack_object = AddingStack()

for i in range(5):
 stack_object.push(i)
print(stack_object.get_sum())

for i in range(5):
 print(stack_object.pop())

Puntos Clave

1. Una pila es un objeto diseñado para almacenar datos utilizando el modelo LIFO. La pila normalmente realiza
al menos dos operaciones, llamadas push() y pop().

2. La implementación de la pila en un modelo procedimental plantea varios problemas que pueden resolverse
con las técnicas ofrecidas por la POO (Programación Orientada a Objetos).

3. Un método de clase es en realidad una función declarada dentro de la clase y capaz de acceder a todos los
componentes de la clase.

4. La parte de la clase en Python responsable de crear nuevos objetos se llama constructor y se implementa
como un método de nombre __init__.

5. Cada declaración de método de clase debe contener al menos un parámetro (siempre el primero)
generalmente denominado self, y es utilizado por los objetos para identificarse a sí mismos.

6. Si queremos ocultar alguno de los componentes de una clase del mundo exterior, debemos comenzar su
nombre con __. Estos componentes se denominan privados.

ejercicio

Objetivos

Mejorar las habilidades del estudiante para definir clases.
Emplear clases existentes para crear nuevas clases equipadas con nuevas funcionalidades.

Escenario

Recientemente te mostramos cómo extender las posibilidades de Stack definiendo una nueva clase (es decir,
una subclase) que retiene todos los rasgos heredados y agrega algunos nuevos.

Tu tarea es extender el comportamiento de la clase Stack de tal manera que la clase pueda contar todos los
elementos que son agregados (push) y quitados (pop). Emplea la clase Stack que proporcionamos en el editor.

Sigue las sugerencias:

Introduce una propiedad diseñada para contar las operaciones pop y nombrarla de una manera que garantice

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

que esté oculta. Inicializala a cero dentro del constructor. Proporciona un método que devuelva el valor
asignado actualmente al contador (nómbralo get_counter()).

class Stack:
 def __init__(self):
 self.__stk = []

 def push(self, val):
 self.__stk.append(val)

 def pop(self):
 val = self.__stk[-1]
 del self.__stk[-1]
 return val

class CountingStack(Stack):
 def __init__(self):
 #
 # Llena el constructor con acciones apropiadas.
 #

 def get_counter(self):
 #
 # Presenta el valor actual del contador al mundo.
 #

 def pop(self):
 #
 # Haz un pop y actualiza el contador.
 #

stk = CountingStack()
for i in range(100):
 stk.push(i)
 stk.pop()
print(stk.get_counter())

Completa el código en el editor. Ejecútalo para comprobar si tu código da como salida 100.

ejercicio

Objetivos

Mejorar las habilidades del estudiante para definir clases desde cero.
Implementar estructuras de datos estándar como clases.

Escenario

Como ya sabes, una pila es una estructura de datos que realiza el modelo LIFO (último en entrar, primero en

14/02/2026 17:18 21/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

salir). Es fácil y ya te has acostumbrado a ello perfectamente.

Probemos algo nuevo ahora. Una cola (queue) es un modelo de datos caracterizado por el término FIFO: primero
en entrar, primero en salir. Nota: una cola (fila) regular que conozcas de las tiendas u oficinas de correos
funciona exactamente de la misma manera: un cliente que llegó primero también es el primero en ser atendido.

Tu tarea es implementar la clase Queue con dos operaciones básicas:

put(elemento), que coloca un elemento al final de la cola.
get(), que toma un elemento del principio de la cola y lo devuelve como resultado (la cola no puede estar
vacía para realizarlo correctamente).

Sigue las sugerencias:

Emplea una lista como tu almacenamiento (como lo hicimos con la pila).
put() debe agregar elementos al principio de la lista, mientras que get() debe eliminar los elementos del
final de la lista.
Define una nueva excepción llamada QueueError (elige una excepción de la cual se derivará) y generala
cuando get() intentes operar en una lista vacía.

Completa el código que te proporcionamos en el editor. Ejecútalo para comprobar si tu salida es similar a la
nuestra.

Salida Esperada

1
perro
False
Error de Cola

class QueueError(???): # Eligir la clase base para la nueva excepción.
 #
 # Escribe código aquí.
 #

class Queue:
 def __init__(self):
 #
 # Escribe código aquí.
 #

 def put(self, elem):
 #
 # Escribe código aquí.
 #

 def get(self):
 #
 # Escribe código aquí.
 #

que = Queue()
que.put(1)
que.put("perro")
que.put(False)

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

try:
 for i in range(4):
 print(que.get())
except:
 print("Error de Cola")

ejercicio

Objetivos

Mejorar las habilidades del estudiante para definir subclases.
Agregar nueva funcionalidad a una clase existente.

Escenario

Tu tarea es extender ligeramente las capacidades de la clase Queue. Queremos que tenga un método sin
parámetros que devuelva True si la cola está vacía y False de lo contrario.

Completa el código que te proporcionamos en el editor. Ejecútalo para comprobar si genera un resultado similar
al nuestro.

Salida esperada:

1
perro
False
Cola vacía

class QueueError(???):
 pass

class Queue:
 #
 # Código del laboratorio anterior.
 #

class SuperQueue(Queue):
 #
 # Escribe código nuevo aquí.
 #

que = SuperQueue()
que.put(1)
que.put("perro")
que.put(False)
for i in range(4):
 if not que.isempty():
 print(que.get())

14/02/2026 17:18 23/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

 else:
 print("Cola vacía")

Variables de instancia

En general, una clase puede equiparse con dos tipos diferentes de datos para formar las propiedades de una
clase. Ya viste uno de ellos cuando estábamos estudiando pilas.

Este tipo de propiedad existe solo cuando se crea explícitamente y se agrega a un objeto. Como ya sabes, esto
se puede hacer durante la inicialización del objeto, realizada por el constructor.

Además, se puede hacer en cualquier momento de la vida del objeto. Es importante mencionar también que
cualquier propiedad existente se puede eliminar en cualquier momento.

Tal enfoque tiene algunas consecuencias importantes:

Diferentes objetos de la misma clase pueden poseer diferentes conjuntos de propiedades.
Debe haber una manera de verificar con seguridad si un objeto específico posee la propiedad
que deseas utilizar (a menos que quieras generar una excepción, siempre vale la pena considerarlo).
Cada objeto lleva su propio conjunto de propiedades, no interfieren entre sí de ninguna manera.

Tales variables (propiedades) se llaman variables de instancia.

La palabra instancia sugiere que están estrechamente conectadas a los objetos (que son instancias de clase),
no a las clases mismas. Echemos un vistazo más de cerca.

Aquí hay un ejemplo:

class ExampleClass:
 def __init__(self, val = 1):
 self.first = val

 def set_second(self, val):
 self.second = val

example_object_1 = ExampleClass()
example_object_2 = ExampleClass(2)

example_object_2.set_second(3)

example_object_3 = ExampleClass(4)
example_object_3.third = 5

print(example_object_1.__dict__)
print(example_object_2.__dict__)
print(example_object_3.__dict__)

Se necesita una explicación adicional antes de entrar en más detalles. Echa un vistazo a las últimas tres líneas
del código.

Los objetos de Python, cuando se crean, están dotados de un pequeño conjunto de propiedades y
métodos predefinidos. Cada objeto los tiene, los quieras o no. Uno de ellos es una variable llamada __dict__
(es un diccionario).

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

La variable contiene los nombres y valores de todas las propiedades (variables) que el objeto contiene
actualmente. Vamos a usarla para presentar de forma segura el contenido de un objeto.

Vamos a sumergirnos en el código ahora:

La clase llamada ExampleClass tiene un constructor, el cual crea incondicionalmente una variable de
instancia llamada first, y le asigna el valor pasado a través del primer argumento (desde la perspectiva
del usuario de la clase) o el segundo argumento (desde la perspectiva del constructor); ten en cuenta el
valor predeterminado del parámetro: cualquier cosa que puedas hacer con un parámetro de función
regular también se puede aplicar a los métodos.
La clase también tiene un método que crea otra variable de instancia, llamada second.
Hemos creado tres objetos de la clase ExampleClass, pero todas estas instancias difieren:

example_object_1 solo tiene una propiedad llamada first.
example_object_2 tiene dos propiedades: first y second.
example_object_3 ha sido enriquecido sobre la marcha con una propiedad llamada third uera del
código de la clase: esto es posible y totalmente permisible.

La salida del programa muestra claramente que nuestras suposiciones son correctas: aquí están:

{'first': 1}
{'second': 3, 'first': 2}
{'third': 5, 'first': 4}

Hay una conclusión adicional que debería mencionarse aquí: el modificar una variable de instancia de
cualquier objeto no tiene impacto en todos los objetos restantes. Las variables de instancia están
perfectamente aisladas unas de otras.

class ExampleClass:
 def __init__(self, val = 1):
 self.__first = val

 def set_second(self, val = 2):
 self.__second = val

example_object_1 = ExampleClass()
example_object_2 = ExampleClass(2)

example_object_2.set_second(3)

example_object_3 = ExampleClass(4)
example_object_3.__third = 5

print(example_object_1.__dict__)
print(example_object_2.__dict__)
print(example_object_3.__dict__)

Es casi lo mismo que el anterior. La única diferencia está en los nombres de las propiedades. Hemos
antepuesto dos guiones bajos (__).

Como sabes, tal adición hace que la variable de instancia sea privada, se vuelve inaccesible desde el mundo
exterior.

El comportamiento real de estos nombres es un poco más complicado, así que ejecutemos el programa. Esta es

14/02/2026 17:18 25/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

la salida:

{'_ExampleClass__first': 1}
{'_ExampleClass__first': 2, '_ExampleClass__second': 3}
{'_ExampleClass__first': 4, '__third': 5}

¿Puedes ver estos nombres extraños llenos de guiones bajos? ¿De dónde provienen?

Cuando Python ve que deseas agregar una variable de instancia a un objeto y lo vas a hacer dentro de
cualquiera de los métodos del objeto, maneja la operación de la siguiente manera:

Coloca un nombre de clase antes de tu nombre.
Coloca un guión bajo adicional al principio.

Es por ello que __first se convierte en _ExampleClass__first.

El nombre ahora es completamente accesible desde fuera de la clase. Puedes ejecutar un código como
este:

print(example_object_1._ExampleClass__first)

Obtendrás un resultado válido sin errores ni excepciones.

Como puedes ver, hacer que una propiedad sea privada es limitado.

No funcionará si agregas una variable de instancia fuera del código de la clase. En este caso, se comportará
como cualquier otra propiedad ordinaria.

Variables de clase

Una variable de clase es una propiedad que existe en una sola copia y se almacena fuera de cualquier
objeto.

Nota: no existe una variable de instancia si no hay ningún objeto de la clase; solo existe una variable de clase
en una copia, incluso si no hay objetos en la clase.

Las variables de clase se crean de manera diferente. El ejemplo te dirá más:

class ExampleClass:
 counter = 0
 def __init__(self, val = 1):
 self.__first = val
 ExampleClass.counter += 1

example_object_1 = ExampleClass()
example_object_2 = ExampleClass(2)
example_object_3 = ExampleClass(4)

print(example_object_1.__dict__, example_object_1.counter)
print(example_object_2.__dict__, example_object_2.counter)
print(example_object_3.__dict__, example_object_3.counter)

Observa:

Hay una asignación en la primera linea de la definición de clase: establece la variable denominada

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

counter a 0; inicializando la variable dentro de la clase pero fuera de cualquiera de sus métodos hace que
la variable sea una variable de clase.
El acceder a dicha variable tiene el mismo aspecto que acceder a cualquier atributo de instancia; está en
el cuerpo del constructor; como puedes ver, el constructor incrementa la variable en uno; en efecto, la
variable cuenta todos los objetos creados.

Ejecutar el código provocará el siguiente resultado:

{'_ExampleClass__first': 1} 3
{'_ExampleClass__first': 2} 3
{'_ExampleClass__first': 4} 3

Dos conclusiones importantes se pueden sacar del ejemplo:

Las variables de clase no se muestran en el diccionario de un objeto __dict__ (esto es natural ya que
las variables de clase no son partes de un objeto), pero siempre puedes intentar buscar en la variable del
mismo nombre, pero a nivel de clase, te mostraremos esto muy pronto.
Una variable de clase siempre presenta el mismo valor en todas las instancias de clase (objetos).

El cambiar el nombre de una variable de clase tiene los mismos efectos que aquellos con los que ya está
familiarizado.

Mira el ejemplo en el editor. ¿Puedes adivinar su salida?

class ExampleClass:
 __counter = 0
 def __init__(self, val = 1):
 self.__first = val
 ExampleClass.__counter += 1

example_object_1 = ExampleClass()
example_object_2 = ExampleClass(2)
example_object_3 = ExampleClass(4)

print(example_object_1.__dict__, example_object_1._ExampleClass__counter)
print(example_object_2.__dict__, example_object_2._ExampleClass__counter)
print(example_object_3.__dict__, example_object_3._ExampleClass__counter)

Hemos dicho antes que las variables de clase existen incluso cuando no se creó ninguna instancia de clase
(objeto).

Ahora aprovecharemos la oportunidad para mostrarte la diferencia entre estas dos variables __dict__, la de
la clase y la del objeto.

class ExampleClass:
 varia = 1
 def __init__(self, val):
 ExampleClass.varia = val

print(ExampleClass.__dict__)
example_object = ExampleClass(2)

print(ExampleClass.__dict__)

14/02/2026 17:18 27/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

print(example_object.__dict__)

Echemos un vistazo más de cerca:

Definimos una clase llamada ExampleClass.1.
La clase define una variable de clase llamada varia.2.
El constructor de la clase establece la variable con el valor del parámetro.3.
Nombrar la variable es el aspecto más importante del ejemplo porque:4.

El cambiar la asignación a self.varia = val crearía una variable de instancia con el mismo nombre
que la de la clase.
El cambiar la asignación a varia = val operaría en la variable local de un método; (te
recomendamos probar los dos casos anteriores; esto te facilitará recordar la diferencia).

La primera línea del código fuera de la clase imprime el valor del atributo ExampleClass.varia . Nota:5.
utilizamos el valor antes de instanciar el primer objeto de la clase.

Ejecuta el código en el editor y verifica su salida.

{'__module__': '__main__', 'varia': 1, '__init__': <function ExampleClass.__init__
at 0x7fc83922b0e0>, '__dict__': <attribute '__dict__' of 'ExampleClass' objects>,
'__weakref__': <attribute '__weakref__' of 'ExampleClass' objects>, '__doc__':
None}
{'__module__': '__main__', 'varia': 2, '__init__': <function ExampleClass.__init__
at 0x7fc83922b0e0>, '__dict__': <attribute '__dict__' of 'ExampleClass' objects>,
'__weakref__': <attribute '__weakref__' of 'ExampleClass' objects>, '__doc__':
None}

Como puedes ver __dict__ contiene muchos más datos que la contraparte de su objeto. La mayoría de ellos son
inútiles ahora, el que queremos que verifiques cuidadosamente muestra el valor actual de varia.

Nota que el __dict__ del objeto está vacío, el objeto no tiene variables de instancia.

Comprobando la existencia de un atributo

La actitud de Python hacia la instanciación de objetos plantea una cuestión importante: en contraste con otros
lenguajes de programación, es posible que no esperes que todos los objetos de la misma clase tengan
los mismos conjuntos de propiedades.

class ExampleClass:
 def __init__(self, val):
 if val % 2 != 0:
 self.a = 1
 else:
 self.b = 1

example_object = ExampleClass(1)

print(example_object.a)
print(example_object.b)

El objeto creado por el constructor solo puede tener uno de los dos atributos posibles: a o b.

La ejecución del código producirá el siguiente resultado:

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

1
Traceback (most recent call last):
 File ".main.py", line 11, in
 print(example_object.b)
AttributeError: 'ExampleClass' object has no attribute 'b'

Como puedes ver, acceder a un atributo de objeto (clase) no existente genera una excepción AttributeError.

La instrucción try-except te brinda la oportunidad de evitar problemas con propiedades inexistentes.

class ExampleClass:
 def __init__(self, val):
 if val % 2 != 0:
 self.a = 1
 else:
 self.b = 1

example_object = ExampleClass(1)
print(example_object.a)

try:
 print(example_object.b)
except AttributeError:
 pass

Como puedes ver, esta acción no es muy sofisticada. Esencialmente, acabamos de barrer el tema debajo de la
alfombra.

Afortunadamente, hay una forma más de hacer frente al problema.

Python proporciona una función que puede verificar con seguridad si algún objeto / clase contiene una
propiedad específica. La función se llama hasattr, y espera que le pasen dos argumentos:

La clase o el objeto que se verifica.
El nombre de la propiedad cuya existencia se debe informar (Nota: debe ser una cadena que contenga el
nombre del atributo).

La función retorna True o False.

Así es como puedes utilizarla:

class ExampleClass:
 def __init__(self, val):
 if val % 2 != 0:
 self.a = 1
 else:
 self.b = 1

example_object = ExampleClass(1)
print(example_object.a)

if hasattr(example_object, 'b'):
 print(example_object.b)

14/02/2026 17:18 29/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

No olvides que la función hasattr() también puede operar en clases. Puedes usarla para averiguar si una
variable de clase está disponible, como en el ejemplo en el editor.

La función devuelve True si la clase especificada contiene un atributo dado, y False de lo contrario.

class ExampleClass:
 attr = 1

print(hasattr(ExampleClass, 'attr'))
print(hasattr(ExampleClass, 'prop'))

Un ejemplo más: analiza el código a continuación e intenta predecir su salida:

class ExampleClass:
 a = 1
 def __init__(self):
 self.b = 2

example_object = ExampleClass()

print(hasattr(example_object, 'b'))
print(hasattr(example_object, 'a'))
print(hasattr(ExampleClass, 'b'))
print(hasattr(ExampleClass, 'a'))

Bien, hemos llegado al final de esta sección. En la siguiente sección vamos a hablar sobre los métodos, ya que
los métodos dirigen los objetos y los activan.

Puntos Clave

1. Una variable de instancia es una propiedad cuya existencia depende de la creación de un objeto. Cada objeto
puede tener un conjunto diferente de variables de instancia.

Además, se pueden agregar y quitar libremente de los objetos durante su vida útil. Todas las variables de
instancia de objeto se almacenan dentro de un diccionario dedicado llamado __dict__, contenido en cada objeto
por separado.

2. Una variable de instancia puede ser privada cuando su nombre comienza con __, pero no olvides que dicha
propiedad aún es accesible desde fuera de la clase usando un nombre modificado construido como <
codel>_ClassName__PrivatePropertyName.

3. Una variable de clase es una propiedad que existe exactamente en una copia y no necesita ningún objeto
creado para ser accesible. Estas variables no se muestran como contenido de __dict__.

Todas las variables de clase de una clase se almacenan dentro de un diccionario dedicado llamado __dict__,
contenido en cada clase por separado.

4. Una función llamada hasattr() se puede utilizar para determinar si algún objeto o clase contiene cierta
propiedad especificada.

Por ejemplo:

class Sample:

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

 gamma = 0 # Class variable.
 def __init__(self):
 self.alpha = 1 # Variable de instancia.
 self.__delta = 3 # Variable de instancia privada.

obj = Sample()
obj.beta = 2 # Otra variable de instancia (que existe solo dentro de la instancia
"obj").
print(obj.__dict__)

El código da como salida:

{'alpha': 1, '_Sample__delta': 3, 'beta': 2}

https://edube.org/learn/python-essentials-2-esp/poo-m-eacute-todos-10

Métodos a detalle

Resumamos todos los hechos relacionados con el uso de métodos en las clases de Python.

Como ya sabes, un método es una función que está dentro de una clase.

Existe un requisito fundamental: un método está obligado a tener al menos un parámetro (no existen
métodos sin parámetros; un método puede invocarse sin un argumento, pero no puede declararse sin
parámetros).

El primer (o único) parámetro generalmente se denomina self. Te sugerimos que lo sigas nombrando de esta
manera, darle otros nombres puede causar sorpresas inesperadas.

El nombre self sugiere el propósito del parámetro: identifica el objeto para el cual se invoca el método.

Si vas a invocar un método, no debes pasar el argumento para el parámetro self, Python lo configurará por ti.

class Classy:
 def method(self):
 print("método")

obj = Classy()
obj.method()

El código da como salida:

método

Toma en cuenta la forma en que hemos creado el objeto, hemos tratado el nombre de la clase como una
función, y devuelve un objeto recién instanciado de la clase.

Si deseas que el método acepte parámetros distintos a self, debes:

Colocarlos después de self en la definición del método.
Pasarlos como argumentos durante la invocación sin especificar self.

https://edube.org/learn/python-essentials-2-esp/poo-m-eacute-todos-10

14/02/2026 17:18 31/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Justo como aqui:

class Classy:
 def method(self, par):
 print("método:", par)

obj = Classy()
obj.method(1)
obj.method(2)
obj.method(3)

El código da como salida:

método: 1
método: 2
método: 3

El parámetro self es usado para obtener acceso a la instancia del objeto y las variables de clase.

El ejemplo muestra ambas formas de utilizar el parámetro self:

class Classy:
 varia = 2
 def method(self):
 print(self.varia, self.var)

obj = Classy()
obj.var = 3
obj.method()

El código da como salida:

2 3

El parámetro self también se usa para invocar otros métodos desde dentro de la clase.

Justo como aquí:

class Classy:
 def other(self):
 print("otro")

 def method(self):
 print("método")
 self.other()

obj = Classy()
obj.method()

El código da como salida:

método

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

otro

Si se nombra un método de esta manera: __init__, no será un método regular, será un constructor.

Si una clase tiene un constructor, este se invoca automática e implícitamente cuando se instancia el objeto de
la clase.

El constructor:

Esta obligado a tener el parámetro self (se configura automáticamente).
Pudiera (pero no necesariamente) tener mas parámetros que solo self; si esto sucede, la forma en
que se usa el nombre de la clase para crear el objeto debe tener la definición __init__.
Se puede utilizar para configurar el objeto, es decir, inicializa adecuadamente su estado interno,
crea variables de instancia, crea instancias de cualquier otro objeto si es necesario, etc.

El ejemplo muestra un constructor muy simple pero funcional.

class Classy:
 def __init__(self, value):
 self.var = value

obj_1 = Classy("objeto")

print(obj_1.var)

Ejecútalo. El código da como salida:

objeto

Ten en cuenta que el constructor:

No puede retornar un valor, ya que está diseñado para devolver un objeto recién creado y nada más.
No se puede invocar directamente desde el objeto o desde dentro de la clase (puedes invocar
un constructor desde cualquiera de las superclases del objeto, pero discutiremos esto más adelante).

Como __init__ es un método, y un método es una función, puedes hacer los mismos trucos con constructores y
métodos que con las funciones ordinarias.

El ejemplo en el editor muestra cómo definir un constructor con un valor de argumento predeterminado.
Pruébalo.

class Classy:
 def __init__(self, value = None):
 self.var = value

obj_1 = Classy("objeto")
obj_2 = Classy()

print(obj_1.var)
print(obj_2.var)

El código da como salida:

14/02/2026 17:18 33/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

objeto
None

Todo lo que hemos dicho sobre el manejo de los nombres también se aplica a los nombres de métodos, un
método cuyo nombre comienza con __ está (parcialmente) oculto.

El ejemplo muestra este efecto:

class Classy:
 def visible(self):
 print("visible")

 def __hidden(self):
 print("oculto")

obj = Classy()
obj.visible()

try:
 obj.__hidden()
except:
 print("fallido")

obj._Classy__hidden()

El código da como salida:

visible
fallido
oculto

La vida interna de clases y objetos

Cada clase de Python y cada objeto de Python está pre-equipado con un conjunto de atributos útiles que
pueden usarse para examinar sus capacidades.

Ya conoces uno de estos: es la propiedad __dict__.

Observemos como esta propiedad trata con los métodos

class Classy:
 varia = 1
 def __init__(self):
 self.var = 2

 def method(self):
 pass

 def __hidden(self):
 pass

obj = Classy()

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

print(obj.__dict__)
print(Classy.__dict__)

Ejecútalo para ver que produce. Verifica el resultado.

{'var': 2}
{'__module__': '__main__', 'varia': 1, '__init__': <function Classy.__init__ at
0x7fcb0ae8c320>, 'method': <function Classy.method at 0x7fcb0ae8c3b0>,
'_Classy__hidden': <function Classy.__hidden at 0x7fcb0ae8c440>, '__dict__':
<attribute '__dict__' of 'Classy' objects>, '__weakref__': <attribute '__weakref__'
of 'Classy' objects>, '__doc__': None}

Encuentra todos los métodos y atributos definidos. Localiza el contexto en el que existen: dentro del objeto o
dentro de la clase.

__dict__ es un diccionario. Otra propiedad incorporada que vale la pena mencionar es una cadena llamada
__name__.

La propiedad contiene el nombre de la clase. No es nada emocionante, es solo una cadena.

Nota: el atributo __name__ está ausente del objeto, existe solo dentro de las clases.

Si deseas encontrar la clase de un objeto en particular, puedes usar una función llamada type(), la cual
es capaz (entre otras cosas) de encontrar una clase que se haya utilizado para crear instancias de cualquier
objeto.

Observa el código en el editor, ejecútalo y compruébalo tu mismo.

class Classy:
 pass

print(Classy.__name__)
obj = Classy()
print(type(obj).__name__)

La salida del código es:

Classy
Classy

Nota: algo como esto

print(obj.__name__)

causará un error.

__module__ es una cadena, también almacena el nombre del módulo que contiene la definición de la
clase.

Vamos a comprobarlo: ejecuta el código en el editor.

La salida del código es:

14/02/2026 17:18 35/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

__main__
__main__

Como sabes, cualquier módulo llamado __main__ en realidad no es un módulo, sino es el archivo actualmente
en ejecución.

__bases__ es una tupla. La tupla contiene clases (no nombres de clases) que son superclases directas de la
clase.

El orden es el mismo que el utilizado dentro de la definición de clase.

Te mostraremos solo un ejemplo muy básico, ya que queremos resaltar cómo funciona la herencia.

Además, te mostraremos cómo usar este atributo cuando discutamos los aspectos orientados a objetos de las
excepciones.

Nota: solo las clases tienen este atributo, los objetos no.

Hemos definido una función llamada printBases(), diseñada para presentar claramente el contenido de la tupla.

class SuperOne:
 pass

class SuperTwo:
 pass

class Sub(SuperOne, SuperTwo):
 pass

def printBases(cls):
 print('(', end='')

 for x in cls.__bases__:
 print(x.__name__, end=' ')
 print(')')

printBases(SuperOne)
printBases(SuperTwo)
printBases(Sub)

Su salida es:

(object)
(object)
(SuperOne SuperTwo)

Nota: una clase sin superclases explícitas apunta a object (una clase de Python predefinida) como su
antecesor directo.

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

Reflexión e introspección

Todo esto permite que el programador de Python realice dos actividades importantes específicas para muchos
lenguajes objetivos. Las cuales son:

Introspección, que es la capacidad de un programa para examinar el tipo o las propiedades de un
objeto en tiempo de ejecución.
Reflexión, que va un paso más allá, y es la capacidad de un programa para manipular los valores,
propiedades y/o funciones de un objeto en tiempo de ejecución.

En otras palabras, no tienes que conocer la definición completa de clase/objeto para manipular el objeto, ya que
el objeto y/o su clase contienen los metadatos que te permiten reconocer sus características durante la
ejecución del programa.

Investigando Clases

¿Qué puedes descubrir acerca de las clases en Python? La respuesta es simple: todo.

Tanto la reflexión como la introspección permiten al programador hacer cualquier cosa con cada objeto, sin
importar de dónde provenga.

class MyClass:
 pass

obj = MyClass()
obj.a = 1
obj.b = 2
obj.i = 3
obj.ireal = 3.5
obj.integer = 4
obj.z = 5

def incIntsI(obj):
 for name in obj.__dict__.keys():
 if name.startswith('i'):
 val = getattr(obj, name)
 if isinstance(val, int):
 setattr(obj, name, val + 1)

print(obj.__dict__)
incIntsI(obj)
print(obj.__dict__)

La función llamada incIntsI() toma un objeto de cualquier clase, escanea su contenido para encontrar todos
los atributos enteros con nombres que comienzan con i, y los incrementa en uno.

¿Imposible? ¡De ninguna manera!

14/02/2026 17:18 37/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Así es como funciona:

La línea 1: define una clase muy simple…
Las líneas 3 a la 10: … la llenan con algunos atributos.
La línea 14: ¡esta es nuestra función!
La línea 15: escanea el atributo __dict__, buscando todos los nombres de atributos.
La línea 16: si un nombre comienza con i…
La línea 17: … utiliza la función getattr() para obtener su valor actual; nota: getattr() toma dos
argumentos: un objeto y su nombre de propiedad (como una cadena) y devuelve el valor del atributo
actual.
La línea 18: comprueba si el valor es de tipo entero, emplea la función isinstance() para este
propósito (discutiremos esto más adelante).
La línea 19: si la comprobación sale bien, incrementa el valor de la propiedad haciendo uso de la función
setattr(); la función toma tres argumentos: un objeto, el nombre de la propiedad (como una cadena) y
el nuevo valor de la propiedad.

El código da como salida:

{'a': 1, 'integer': 4, 'b': 2, 'i': 3, 'z': 5, 'ireal': 3.5}
{'a': 1, 'integer': 5, 'b': 2, 'i': 4, 'z': 5, 'ireal': 3.5}

Puntos Clave

1. Un método es una función dentro de una clase. El primer (o único) parámetro de cada método se suele llamar
self, que está diseñado para identificar al objeto para el que se invoca el método con el fin de acceder a las
propiedades del objeto o invocar sus métodos.

2. Si una clase contiene un constructor (un método llamado __init__), este no puede devolver ningún valor y no
se puede invocar directamente.

3. Todas las clases (pero no los objetos) contienen una propiedad llamada __name__, que almacena el nombre
de la clase. Además, una propiedad llamada __module__ almacena el nombre del módulo en el que se ha
declarado la clase, mientras que la propiedad llamada __bases__ es una tupla que contiene las superclases de
una clase.

Por ejemplo:

class Sample:
 def __init__(self):
 self.name = Sample.__name__
 def myself(self):
 print("Mi nombre es " + self.name + " y vivo en " + Sample.__module__)

obj = Sample()
obj.myself()

El código da como salida:

Mi nombre es Sample y vivo en __main__

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

ejercicio

Objetivos

Mejorar las habilidades del estudiante para definir clases desde cero.
Definir y usar variables de instancia.
Definir y usar métodos.

Escenario

Necesitamos una clase capaz de contar segundos. ¿Fácil? No es tan fácil como podrías pensar, ya que
tendremos algunos requisitos específicos.

Léelos con atención, ya que la clase sobre la que escribes se utilizará para lanzar cohetes en misiones
internacionales a Marte. Es una gran responsabilidad. ¡Contamos contigo!

Tu clase se llamará Timer (temporizador en español). Su constructor acepta tres argumentos que representan
horas (un valor del rango [0..23]; usaremos tiempo militar), minutos (del rango [0. .59]) y segundos (del
rango [0..59]).

Cero es el valor predeterminado para todos los parámetros anteriores. No es necesario realizar ninguna
comprobación de validación.

La clase en sí debería proporcionar las siguientes facilidades:

Los objetos de la clase deben ser «imprimibles», es decir, deben poder convertirse implícitamente en
cadenas de la siguiente forma: «hh:mm:ss», con ceros a la izquierda agregados cuando cualquiera de los
valores es menor que 10.
La clase debe estar equipada con métodos sin parámetros llamados next_second() y previous_second (),
incrementando el tiempo almacenado dentro de los objetos en +1/-1 segundos respectivamente.

Emplea las siguientes sugerencias:

Todas las propiedades del objeto deben ser privadas.
Considera escribir una función separada (¡no un método!) para formatear la cadena con el tiempo.

class Timer:
 def __init__(???):
 #
 # Escribir código aquí.
 #

 def __str__(self):
 #
 # Escribir código aquí.
 #

 def next_second(self):
 #
 # Escribir código aquí.
 #

 def prev_second(self):

14/02/2026 17:18 39/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

 #
 # Escribir código aquí.
 #

timer = Timer(23, 59, 59)
print(timer)
timer.next_second()
print(timer)
timer.prev_second()
print(timer)

Ejecuta tu código y comprueba si el resultado es el mismo que el nuestro.

Salida Esperada

23:59:59
00:00:00
23:59:59

ejercicio

Objetivos

Mejorar las habilidades del estudiante para definir clases desde cero.
Definir y usar variables de instancia.
Definir y usar métodos.

Escenario

Tu tarea es implementar una clase llamada Weeker. Sí, tus ojos no te engañan, este nombre proviene del hecho
de que los objetos de esta clase podrán almacenar y manipular los días de la semana.

El constructor de la clase acepta un argumento: una cadena. La cadena representa el nombre del día de la
semana y los únicos valores aceptables deben provenir del siguiente conjunto:

Lun Mar Mie Jue Vie Sab Dom

Invocar al constructor con un argumento desde fuera de este conjunto debería generar la excepción
WeekDayError (defínela tu mismo; no te preocupes, pronto hablaremos sobre la naturaleza objetiva de las
excepciones). La clase debe proporcionar las siguientes facilidades:

Los objetos de la clase deben ser «imprimibles», es decir, deben poder convertirse implícitamente en
cadenas de la misma forma que los argumentos del constructor.
La clase debe estar equipada con métodos de un parámetro llamados add_days(n) y subtract_days(n),
siendo n un número entero que actualiza el día de la semana almacenado dentro del objeto mediante el
número de días indicado, hacia adelante o hacia atrás.
Todas las propiedades del objeto deben ser privadas.

Completa la plantilla que te proporcionamos en el editor, ejecuta su código y verifica si tu salida se ve igual que
la nuestra.

class WeekDayError(Exception):

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

 pass

class Weeker:
 #
 # Escribir código aquí.
 #

 def __init__(self, day):
 #
 # Escribir código aquí.
 #

 def __str__(self):
 #
 # Escribir código aquí.
 #

 def add_days(self, n):
 #
 # Escribir código aquí.
 #

 def subtract_days(self, n):
 #
 # Escribir código aquí.
 #

try:
 weekday = Weeker('Lun')
 print(weekday)
 weekday.add_days(15)
 print(weekday)
 weekday.subtract_days(23)
 print(weekday)
 weekday = Weeker('Lun')
except WeekDayError:
 print("Lo siento, no puedo atender tu solicitud.")

Salida Esperada

Lun
Mar
Dom
Lo siento, no puedo atender tu solicitud.

Objetivos

Mejorar las habilidades del estudiante para definir clases desde cero.
Definir y usar variables de instancia.
Definir y usar métodos.

14/02/2026 17:18 41/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Escenario

Visitemos un lugar muy especial: un plano con el sistema de coordenadas cartesianas (puedes obtener más
información sobre este concepto aquí: https://en.wikipedia.org/wiki/Cartesian_coordinate_system).

Cada punto ubicado en el plano puede describirse como un par de coordenadas habitualmente llamadas x y y.
Queremos que escribas una clase en Python que almacene ambas coordenadas como números flotantes.
Además, queremos que los objetos de esta clase evalúen las distancias entre cualquiera de los dos puntos
situados en el plano.

La tarea es bastante fácil si empleas la función denominada hypot() (disponible a través del módulo math) que
evalúa la longitud de la hipotenusa de un triángulo rectángulo (más detalles aquí:
https://en.wikipedia.org/wiki/Hypotenuse) y aquí:
https://docs.python.org/3.7/library/math.html#trigonometric-functions.

Así es como imaginamos la clase:

Se llama Point.
Su constructor acepta dos argumentos (x y y respectivamente), ambos por defecto se igualan a cero.
Todas las propiedades deben ser privadas.
La clase contiene dos métodos sin parámetros llamados getx() y gety(), que devuelven cada una de las
dos coordenadas (las coordenadas se almacenan de forma privada, por lo que no se puede acceder a
ellas directamente desde el objeto).
La clase proporciona un método llamado distance_from_xy(x,y), que calcula y devuelve la distancia entre
el punto almacenado dentro del objeto y el otro punto dado en un par de números flotantes.
La clase proporciona un método llamado distance_from_point(point), que calcula la distancia (como el
método anterior), pero la ubicación del otro punto se da como otro objeto de clase Point.

Completa la plantilla que te proporcionamos en el editor, ejecuta tu código y verifica si tu salida se ve igual que
la nuestra.

import math

class Point:
 def __init__(self, x=0.0, y=0.0):
 #
 # Escribir el código aquí.
 #

 def getx(self):
 #
 # Escribir el código aquí.
 #

 def gety(self):
 #
 # Escribir el código aquí.
 #

 def distance_from_xy(self, x, y):
 #
 # Escribir el código aquí.
 #

 def distance_from_point(self, point):

https://en.wikipedia.org/wiki/Cartesian_coordinate_system
https://en.wikipedia.org/wiki/Hypotenuse
https://docs.python.org/3.7/library/math.html#trigonometric-functions

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

 #
 # Escribir el código aquí.
 #

point1 = Point(0, 0)
point2 = Point(1, 1)
print(point1.distance_from_point(point2))
print(point2.distance_from_xy(2, 0))

Salida esperada

1.4142135623730951
1.4142135623730951

ejercicio

Objetivos

Mejorar las habilidades del estudiante para definir clases desde cero.
Emplear composición.

Escenario

Ahora vamos a colocar la clase Point (ver Lab 3.4.1.14) dentro de otra clase. Además, vamos a poner tres
puntos en una clase, lo que nos permitirá definir un triángulo.¿Cómo podemos hacerlo?

La nueva clase se llamará Triangle y esto es lo que queremos:

El constructor acepta tres argumentos - todos ellos son objetos de la clase Point.
Los puntos se almacenan dentro del objeto como una lista privada
La clase proporciona un método sin parámetros llamado perimeter(), que calcula el perímetro del
triángulo descrito por los tres puntos; el perímetro es la suma de todas las longitudes de los lados (lo
mencionamos para que conste, aunque estamos seguros de que tú mismo lo conoces perfectamente).

Completa la plantilla que te proporcionamos en el editor, ejecuta tu código y verifica si tu salida se ve igual que
la nuestra.

import math

class Point:
 #
 # El código copiado del laboratorio anterior.
 #

class Triangle:
 def __init__(self, vertice1, vertice2, vertice3):
 #
 # Escribir el código aquí.
 #

14/02/2026 17:18 43/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

 def perimeter(self):
 #
 # Escribir el código aquí.
 #

triangle = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
print(triangle.perimeter())

A continuación puedes copiar el código de la clase Point, el cual se utilizo en el laboratorio anterior:

class Point:
 def __init__(self, x=0.0, y=0.0):
 self.__x = x
 self.__y = y

Salida esperada

3.414213562373095

Herencia: ¿por qué y cómo?

Antes de comenzar a hablar sobre la herencia, queremos presentar un nuevo y práctico mecanismo utilizado
por las clases y los objetos de Python: es la forma en que el objeto puede presentarse a si mismo.

Comencemos con un ejemplo.

class Star:
 def __init__(self, name, galaxy):
 self.name = name
 self.galaxy = galaxy

sun = Star("Sol", "Vía Láctea")
print(sun)

El programa imprime solo una línea de texto, que en nuestro caso es:

<__main__.Star object at 0x7f1074cc7c50>

Si ejecutas el mismo código en tu computadora, verás algo muy similar, aunque el número hexadecimal (la
subcadena que comienza con 0x) será diferente, ya que es solo un identificador de objeto interno utilizado por
Python, y es poco probable que aparezca igual cuando se ejecuta el mismo código en un entorno diferente.

Como puedes ver, la impresión aquí no es realmente útil, y algo más específico, es preferible.

Afortunadamente, Python ofrece tal función.

Cuando Python necesita que alguna clase u objeto deba ser presentado como una cadena (es recomendable
colocar el objeto como argumento en la invocación de la función print()), intenta invocar un método llamado
__str__() del objeto y emplear la cadena que devuelve.

El método por default __str__() devuelve la cadena anterior: fea y poco informativa. Puedes cambiarlo

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

definiendo tu propio método.

class Star:
 def __init__(self, name, galaxy):
 self.name = name
 self.galaxy = galaxy

 def __str__(self):
 return self.name + ' en ' + self.galaxy

sun = Star("Sol", "Vía Láctea")
print(sun)

El método nuevo __str__() genera una cadena que consiste en los nombres de la estrella y la galaxia, nada
especial, pero los resultados de impresión se ven mejor ahora, ¿no?

El término herencia es más antiguo que la programación de computadoras, y describe la práctica común de
pasar diferentes bienes de una persona a otra después de la muerte de esa persona. El término, cuando se
relaciona con la programación de computadoras, tiene un significado completamente diferente.

Definamos el término para nuestros propósitos:

La herencia es una práctica común (en la programación de objetos) de pasar atributos y métodos de la
superclase (definida y existente) a una clase recién creada, llamada subclase.

14/02/2026 17:18 45/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

En otras palabras, la herencia es una forma de construir una nueva clase, no desde cero, sino
utilizando un repertorio de rasgos ya definido. La nueva clase hereda (y esta es la clave) todo el
equipamiento ya existente, pero puedes agregar algo nuevo si es necesario.

Gracias a eso, es posible construir clases más especializadas (más concretas) utilizando algunos
conjuntos de reglas y comportamientos generales predefinidos.

El factor más importante del proceso es la relación entre la superclase y todas sus subclases (nota: si B es una
subclase de A y C es una subclase de B, esto también significa que C es una subclase de A, ya que la relación es
totalmente transitiva).

Aquí se presenta un ejemplo muy simple de herencia de dos niveles:

class Vehicle:
 pass

class LandVehicle(Vehicle):
 pass

class TrackedVehicle(LandVehicle):
 pass

Todas las clases presentadas están vacías por ahora, ya que te mostraremos cómo funcionan las relaciones
mutuas entre las superclases y las subclases. Las llenaremos con contenido pronto.

Podemos decir que:

La clase Vehicle es la superclase para clases LandVehicle y TrackedVehicle.
La clase LandVehicle es una subclase de Vehicle y la superclase de TrackedVehicle al mismo tiempo.
La clase TrackedVehicle es una subclase tanto de Vehicle y LandVehicle.

El conocimiento anterior proviene de la lectura del código (en otras palabras, lo sabemos porque podemos
verlo).

¿Python sabe lo mismo? ¿Es posible preguntarle a Python al respecto? Sí lo es.

Herencia: issubclass()

Python ofrece una función que es capaz de identificar una relación entre dos clases, y aunque su
diagnóstico no es complejo, puede verificar si una clase particular es una subclase de cualquier otra
clase.

Así es como se ve:

issubclass(ClassOne, ClassTwo)

La función devuelve True si ClassOne es una subclase de ClassTwo, y False de lo contrario.

Vamos a verlo en acción, puede sorprenderte.

class Vehicle:
 pass

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

class LandVehicle(Vehicle):
 pass

class TrackedVehicle(LandVehicle):
 pass

for cls1 in [Vehicle, LandVehicle, TrackedVehicle]:
 for cls2 in [Vehicle, LandVehicle, TrackedVehicle]:
 print(issubclass(cls1, cls2), end="\t")
 print()

Hay dos bucles anidados. Su propósito es verificar todos los pares de clases ordenadas posibles y que
imprima los resultados de la verificación para determinar si el par coincide con la relación subclase-
superclase.

Ejecuta el código. El programa produce el siguiente resultado:

True False False
True True False
True True True

Hagamos que el resultado sea más legible:

Existe una observación importante que hacer: cada clase se considera una subclase de sí misma.

Herencia: isinstance()

Como ya sabes, un objeto es la encarnación de una clase. Esto significa que el objeto es como un pastel
horneado usando una receta que se incluye dentro de la clase.

Esto puede generar algunos problemas.

Supongamos que tienes un pastel (por ejemplo, resultado de un argumento pasado a tu función). Deseas saber
que receta se ha utilizado para prepararlo. ¿Por qué? Porque deseas saber que esperar de él, por ejemplo, si
contiene nueces o no, lo cual es información crucial para ciertas personas.

Del mismo modo, puede ser crucial si el objeto tiene (o no tiene) ciertas características. En otras palabras, si es
un objeto de cierta clase o no.

Tal hecho podría ser detectado por la función llamada isinstance():

14/02/2026 17:18 47/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

isinstance(objectName, ClassName)

La función devuelve True si el objeto es una instancia de la clase, o False de lo contrario.

Ser una instancia de una clase significa que el objeto (el pastel) se ha preparado utilizando una
receta contenida en la clase o en una de sus superclases.

No lo olvides: si una subclase contiene al menos las mismas características que cualquiera de sus superclases,
significa que los objetos de la subclase pueden hacer lo mismo que los objetos derivados de la superclase, por
lo tanto, es una instancia de su clase de inicio y cualquiera de sus superclases.

class Vehicle:
 pass

class LandVehicle(Vehicle):
 pass

class TrackedVehicle(LandVehicle):
 pass

my_vehicle = Vehicle()
my_land_vehicle = LandVehicle()
my_tracked_vehicle = TrackedVehicle()

for obj in [my_vehicle, my_land_vehicle, my_tracked_vehicle]:
 for cls in [Vehicle, LandVehicle, TrackedVehicle]:
 print(isinstance(obj, cls), end="\t")
 print()

Hemos creado tres objetos, uno para cada una de las clases. Luego, usando dos bucles anidados, verificamos
todos los pares posibles de clase de objeto para averiguar si los objetos son instancias de las clases.

Ejecuta el código.

Esto es lo que obtenemos:

True False False
True True False
True True True

Hagamos que el resultado sea más legible:

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

Herencia: el operador is

También existe un operador de Python que vale la pena mencionar, ya que se refiere directamente a los
objetos: aquí está:

object_one is object_two

El operador is verifica si dos variables, en este caso (object_one y object_two) se refieren al mismo
objeto.

No olvides que las variables no almacenan los objetos en sí, sino solo los identificadores que apuntan a la
memoria interna de Python.

Asignar un valor de una variable de objeto a otra variable no copia el objeto, sino solo su identificador. Es por
ello que un operador como is puede ser muy útil en ciertas circunstancias.

Echa un vistazo al código en el editor.

class SampleClass:
 def __init__(self, val):
 self.val = val

object_1 = SampleClass(0)
object_2 = SampleClass(2)
object_3 = object_1
object_3.val += 1

print(object_1 is object_2)
print(object_2 is object_3)
print(object_3 is object_1)
print(object_1.val, object_2.val, object_3.val)

string_1 = "Mary tenía un "
string_2 = "Mary tenía un corderito"
string_1 += "corderito"

print(string_1 == string_2, string_1 is string_2)

Analicémoslo:

Existe una clase muy simple equipada con un constructor simple, que crea una sola propiedad. La clase
se usa para instanciar dos objetos. El primero se asigna a otra variable, y su propiedad val se incrementa
en uno.
Luego, el operador is se aplica tres veces para verificar todos los pares de objetos posibles, y todos los
valores de la propiedad val son mostrados en pantalla.
La última parte del código lleva a cabo otro experimento. Después de tres tareas, ambas cadenas
contienen los mismos textos, pero estos textos se almacenan en diferentes objetos.

El código imprime:

False
False
True

14/02/2026 17:18 49/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

1 2 1
True False

Los resultados prueban que object_1 y object_3 son en realidad los mismos objetos, mientras que string_1 y
string_2 no lo son, a pesar de que su contenido sea el mismo.

Cómo Python encuentra propiedades y métodos

Ahora veremos como Python trata con los métodos de herencia.

class Super:
 def __init__(self, name):
 self.name = name

 def __str__(self):
 return "Mi nombre es " + self.name + "."

class Sub(Super):
 def __init__(self, name):
 Super.__init__(self, name)

obj = Sub("Andy")

print(obj)

Vamos a analizarlo:

Existe una clase llamada Super, que define su propio constructor utilizado para asignar la propiedad del
objeto, llamada name.
La clase también define el método __str__(), lo que permite que la clase pueda presentar su identidad
en forma de texto.
La clase se usa luego como base para crear una subclase llamada Sub. La clase Sub define su propio
constructor, que invoca el de la superclase. Toma nota de como lo hemos hecho: Super.__init__(self,
name).
Hemos nombrado explícitamente la superclase y hemos apuntado al método para invocar a
__init__(), proporcionando todos los argumentos necesarios.
Hemos instanciado un objeto de la clase Sub y lo hemos impreso.

El código da como salida:

Mi nombre es Andy.

Nota: Como no existe el método __str__() dentro de la clase Sub, la cadena a imprimir se producirá dentro
de la clase Super. Esto significa que el método __str__() ha sido heredado por la clase Sub.

class Super:
 def __init__(self, name):
 self.name = name

 def __str__(self):
 return "Mi nombre es " + self.name + "."

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

class Sub(Super):
 def __init__(self, name):
 super().__init__(name)

obj = Sub("Andy")

print(obj)

Lo hemos modificado para mostrarte otro método de acceso a cualquier entidad definida dentro de la
superclase.

En el ejemplo anterior, nombramos explícitamente la superclase. En este ejemplo, hacemos uso de la función
super(), la cual accede a la superclase sin necesidad de conocer su nombre:

super().__init__(name)

La función super() crea un contexto en el que no tiene que (además, no debe) pasar el argumento propio al
método que se invoca; es por eso que es posible activar el constructor de la superclase utilizando solo un
argumento.

Nota: puedes usar este mecanismo no solo para invocar al constructor de la superclase, pero también
para obtener acceso a cualquiera de los recursos disponibles dentro de la superclase.

Intentemos hacer algo similar, pero con propiedades (más precisamente con: variables de clase).

Probando propiedades: variables de clase.
class Super:
 supVar = 1

class Sub(Super):
 subVar = 2

obj = Sub()

print(obj.subVar)
print(obj.supVar)

Como puedes observar, la clase Super define una variable de clase llamada supVar, y la clase Sub define una
variable llamada subVar.

Ambas variables son visibles dentro del objeto de clase Sub, es por ello que el código da como salida:

2
1

El mismo efecto se puede observar con variables de instancia, observa el segundo ejemplo en el editor.

Probando propiedades: variables de instancia.
class Super:
 def __init__(self):
 self.supVar = 11

14/02/2026 17:18 51/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

class Sub(Super):
 def __init__(self):
 super().__init__()
 self.subVar = 12

obj = Sub()

print(obj.subVar)
print(obj.supVar)

El constructor de la clase Sub crea una variable de instancia llamada subVar, mientras que el constructor de
Super hace lo mismo con una variable de nombre supVar. Al igual que el ejemplo anterior, ambas variables son
accesibles desde el objeto de clase Sub.

La salida del programa es:

12
11

Nota: La existencia de la variable supVar obviamente está condicionada por la invocación del constructor de la
clase Super. Omitirlo daría como resultado la ausencia de la variable en el objeto creado (pruébalo tu mismo).

Ahora es posible formular una declaración general que describa el comportamiento de Python.

Cuando intentes acceder a una entidad de cualquier objeto, Python intentará (en este orden):

Encontrarla dentro del objeto mismo.
Encontrarla en todas las clases involucradas en la línea de herencia del objeto de abajo hacia arriba.

Si ambos intentos fallan, una excepción (AttributeError) será generada.

La primera condición puede necesitar atención adicional. Como sabes, todos los objetos derivados de una clase
en particular pueden tener diferentes conjuntos de atributos, y algunos de los atributos pueden agregarse al
objeto mucho tiempo después de la creación del objeto.

El ejemplo en el editor resume esto en una línea de herencia de tres niveles.

class Level1:
 variable_1 = 100
 def __init__(self):
 self.var_1 = 101

 def fun_1(self):
 return 102

class Level2(Level1):
 variable_2 = 200
 def __init__(self):
 super().__init__()
 self.var_2 = 201

 def fun_2(self):
 return 202

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

class Level3(Level2):
 variable_3 = 300
 def __init__(self):
 super().__init__()
 self.var_3 = 301

 def fun_3(self):
 return 302

obj = Level3()

print(obj.variable_1, obj.var_1, obj.fun_1())
print(obj.variable_2, obj.var_2, obj.fun_2())
print(obj.variable_3, obj.var_3, obj.fun_3())

100 101 102
200 201 202
300 301 302

Todos los comentarios que hemos hecho hasta ahora están relacionados con casos de herencia única,
cuando una subclase tiene exactamente una superclase. Esta es la situación más común (y también la
recomendada).

Python, sin embargo, ofrece mucho más aquí. En las próximas lecciones te mostraremos algunos ejemplos de
herencia múltiple.

La herencia múltiple ocurre cuando una clase tiene más de una superclase.

Sintácticamente, dicha herencia se presenta como una lista de superclases separadas por comas entre
paréntesis después del nombre de la nueva clase, al igual que aquí:

class SuperA:
 var_a = 10
 def fun_a(self):
 return 11

class SuperB:
 var_b = 20
 def fun_b(self):
 return 21

class Sub(SuperA, SuperB):
 pass

obj = Sub()

print(obj.var_a, obj.fun_a())
print(obj.var_b, obj.fun_b())

La clase Sub tiene dos superclases: SuperA y SuperB. Esto significa que la clase Sub hereda todos los bienes
ofrecidos por ambas clases SuperA y SuperB.

14/02/2026 17:18 53/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

El código imprime:

10 11
20 21

Ahora es el momento de introducir un nuevo término - overriding (anulación).

¿Qué crees que sucederá si más de una de las superclases define una entidad con un nombre en particular?

class Level1:
 var = 100
 def fun(self):
 return 101

class Level2(Level1):
 var = 200
 def fun(self):
 return 201

class Level3(Level2):
 pass

obj = Level3()

print(obj.var, obj.fun())

Tanto la clase, Level1 y Level2 definen un método llamado fun() y una propiedad llamada var. ¿Significará
esto el objeto de la claseLevel3 podrá acceder a dos copias de cada entidad? De ningún modo.

La entidad definida después (en el sentido de herencia) anula la misma entidad definida
anteriormente. Es por eso que el código produce el siguiente resultado:

200 201

Como puedes ver, la variable de clase var y el método fun() de la clase Level2 anula las entidades de los
mismos nombres derivados de la clase Level1.

Esta característica se puede usar intencionalmente para modificar el comportamiento predeterminado de las
clases (o definido previamente) cuando cualquiera de tus clases necesite actuar de manera diferente a su
ancestro.

¿Qué ocurre cuando una clase tiene dos ancestros que ofrecen la misma entidad y se encuentran en el mismo
nivel? En otras palabras, ¿Qué se debe esperar cuando surge una clase usando herencia múltiple? Miremos lo
siguiente.

class Left:
 var = "L"
 var_left = "LL"
 def fun(self):
 return "Left"

class Right:

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

 var = "R"
 var_right = "RR"
 def fun(self):
 return "Right"

class Sub(Left, Right):
 pass

obj = Sub()

print(obj.var, obj.var_left, obj.var_right, obj.fun())

La clase Sub hereda todos los bienes de dos superclases Left y Right 1)

1)

estos nombres están destinados a ser significativos). No hay duda de que la variable de clase var_right proviene
de la clase Right, y var_left proviene de la clase Left respectivamente. Esto es claro. Pero, ¿De donde proviene
la variable var? ¿Es posible adivinarlo? El mismo problema se encuentra con el método fun() - ¿Será invocada
desde Left o desde Right? Ejecutemos el programa: la salida será:

L LL RR Left

Esto prueba que ambos casos poco claros tienen una solución dentro de la clase Left. ¿Es esta una premisa
suficiente para formular una regla general? Sí lo es. Podemos decir que Python busca componentes de
objetos en el siguiente orden:

Dentro del objeto mismo.
En sus superclases, de abajo hacia arriba.
Si hay más de una clase en una ruta de herencia, Python las escanea de izquierda a derecha.

¿Necesitas algo más? Simplemente haz una pequeña enmienda en el código, reemplaza:class Sub(Left, Right):
con: class Sub(Right, Left):, luego ejecuta el programa nuevamente y observa qué sucede. ¿Qué ves ahora?
Vemos:

R LL RR Right

¿Ves lo mismo o algo diferente? === Cómo construir una jerarquía de clases Construir una jerarquía de clases
no es solo por amor al arte. Si divides un problema entre las clases y decides cual de ellas debe ubicarse en la
parte superior y cual debe ubicarse en la parte inferior de la jerarquía, debes analizar cuidadosamente el
problema, pero antes de mostrarte como hacerlo (y como no hacerlo), queremos resaltar un efecto interesante.
No es nada extraordinario (es solo una consecuencia de las reglas generales presentadas anteriormente), pero
recordarlo puede ser clave para comprender como funcionan algunos códigos y cómo se puede usar este efecto
para construir un conjunto flexible de clases.

class One:
 def do_it(self):
 print("do_it de One")

 def doanything(self):
 self.do_it()

class Two(One):
 def do_it(self):

14/02/2026 17:18 55/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

 print("do_it de Two")

one = One()
two = Two()

one.doanything()
two.doanything()

Analicémoslo:

Existen dos clases llamadas One y Two, se entiende que Two es derivada de One. Nada especial. Sin
embargo, algo es notable: el método do_it().
El método do_it() está definido dos veces: originalmente dentro de One posteriormente dentro de
Two. La esencia del ejemplo radica en el hecho de que es invocado solo una vez dentro de One.

La pregunta es: ¿cuál de los dos métodos será invocado por las dos últimas líneas del código? La primera
invocación parece ser simple, el invocar el método doanything() del objeto llamado one obviamente activará
el primero de los métodos. La segunda invocación necesita algo de atención. También es simple si tienes en
cuenta cómo Python encuentra los componentes de la clase. La segunda invocación ejecutará el método
do_it() en la forma existente dentro de la clase Two, independientemente del hecho de que la invocación se
lleva a cabo dentro de la clase One. En efecto, el código genera el siguiente resultado:

do_it from One
do_it from Two

Nota: la situación en la cual la subclase puede modificar el comportamiento de su superclase (como en
el ejemplo) se llama poliformismo. La palabra proviene del griego (polys: «muchos, mucho» y morphe,
«forma, forma»), lo que significa que una misma clase puede tomar varias formas dependiendo de las
redefiniciones realizadas por cualquiera de sus subclases. El método, redefinido en cualquiera de las
superclases, que cambia el comportamiento de la superclase, se llama virtual. En otras palabras, ninguna clase
se da por hecho. El comportamiento de cada clase puede ser modificado en cualquier momento por cualquiera
de sus subclases. Te mostraremos como usar el poliformismo para extender la flexibilidad de la clase.

import time

class TrackedVehicle:
 def control_track(left, stop):
 pass

 def turn(left):
 control_track(left, True)
 time.sleep(0.25)
 control_track(left, False)

class WheeledVehicle:
 def turn_front_wheels(left, on):
 pass

 def turn(left):
 turn_front_wheels(left, True)
 time.sleep(0.25)
 turn_front_wheels(left, False)

¿Se parece a algo? Sí, por supuesto que lo hace. Se refiere al ejemplo que se muestra al comienzo del módulo
cuando hablamos de los conceptos generales de la programación orientada a objetos. Puede parecer extraño,
pero no utilizamos herencia en este ejemplo, solo queríamos mostrarte que no nos limita. Definimos dos clases

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

separadas capaces de producir dos tipos diferentes de vehículos terrestres. La principal diferencia entre ellos
está en cómo giran. Un vehículo con ruedas solo gira las ruedas delanteras (generalmente). Un vehículo oruga
tiene que detener una de las pistas. ¿Puedes seguir el código?

Un vehículo oruga realiza un giro deteniéndose y moviéndose en una de sus pistas (esto lo hace el
método control_track() el cual se implementará más tarde).
Un vehículo con ruedas gira cuando sus ruedas delanteras giran (esto lo hace el método
turn_front_wheels()).
El método turn() utiliza el método adecuado para cada vehículo en particular.

¿Puedes detectar el error del código? Los métodos turn() son muy similares como para dejarlos en esta
forma. Vamos a reconstruir el código: vamos a presentar una superclase para reunir todos los aspectos
similares de los vehículos, trasladando todos los detalles a las subclases.

import time

class Vehicle:
 def change_direction(left, on):
 pass

 def turn(left):
 change_direction(left, True)
 time.sleep(0.25)
 change_direction(left, False)

class TrackedVehicle(Vehicle):
 def control_track(left, stop):
 pass

 def change_direction(left, on):
 control_track(left, on)

class WheeledVehicle(Vehicle):
 def turn_front_wheels(left, on):
 pass

 def change_direction(left, on):
 turn_front_wheels(left, on)

Esto es lo que hemos hecho:

Definimos una superclase llamada Vehicle, la cual utiliza el método turn() para implementar un
esquema para poder girar, mientras que el giro en si es realizado por change_direction(); nota:
dicho método está vacío, ya que vamos a poner todos los detalles en la subclase (dicho método a
menudo se denomina método abstracto, ya que solo demuestra alguna posibilidad que será
instanciada más tarde).
Definimos una subclase llamada TrackedVehicle (nota: es derivada de la clase Vehicle) la cual instancia el
método change_direction() utilizando el método denominado control_track().
Respectivamente, la subclase llamada WheeledVehicle hace lo mismo, pero usa el método
turn_front_wheels() para obligar al vehículo a girar.

La ventaja más importante (omitiendo los problemas de legibilidad) es que esta forma de código te permite
implementar un nuevo algoritmo de giro simplemente modificando el método turn(), lo cual se puede hacer en
un solo lugar, ya que todos los vehículos lo obedecerán. Así es como el el poliformismo ayuda al
desarrollador a mantener el código limpio y consistente. La herencia no es la única forma de construir

14/02/2026 17:18 57/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

clases adaptables. Puedes lograr los mismos objetivos (no siempre, pero muy a menudo) utilizando una técnica
llamada composición. La composición es el proceso de componer un objeto usando otros objetos
diferentes. Los objetos utilizados en la composición entregan un conjunto de rasgos deseados (propiedades y/o
métodos), podemos decir que actúan como bloques utilizados para construir una estructura más complicada.
Puede decirse que:

La herencia extiende las capacidades de una clase agregando nuevos componentes y modificando
los existentes; en otras palabras, la receta completa está contenida dentro de la clase misma y todos sus
ancestros; el objeto toma todas las pertenencias de la clase y las usa.
La composición proyecta una clase como contenedor capaz de almacenar y usar otros objetos
(derivados de otras clases) donde cada uno de los objetos implementa una parte del comportamiento de
una clase.

Permítenos ilustrar la diferencia usando los vehículos previamente definidos. El enfoque anterior nos condujo a
una jerarquía de clases en la que la clase más alta conocía las reglas generales utilizadas para girar el vehículo,
pero no sabía cómo controlar los componentes apropiados (ruedas o pistas). Las subclases implementaron esta
capacidad mediante la introducción de mecanismos especializados. Hagamos (casi) lo mismo, pero usando
composición. La clase, como en el ejemplo anterior, sabe cómo girar el vehículo, pero el giro real lo realiza un
objeto especializado almacenado en una propiedad llamada controlador. El controlador es capaz de controlar el
vehículo manipulando las partes relevantes del vehículo.

import time

class Tracks:
 def change_direction(self, left, on):
 print("pistas: ", left, on)

class Wheels:
 def change_direction(self, left, on):
 print("ruedas: ", left, on)

class Vehicle:
 def __init__(self, controller):
 self.controller = controller

 def turn(self, left):
 self.controller.change_direction(left, True)
 time.sleep(0.25)
 self.controller.change_direction(left, False)

wheeled = Vehicle(Wheels())
tracked = Vehicle(Tracks())

wheeled.turn(True)
tracked.turn(False)

Existen dos clases llamadas Tracks y Wheels, ellas saben como controlar la dirección del vehículo. También hay
una clase llamada Vehicle que puede usar cualquiera de los controladores disponibles (los dos ya definidos o
cualquier otro definido en el futuro): el controlador se pasa a la clase durante la inicialización. De esta manera,
la capacidad de giro del vehículo se compone de un objeto externo, no implementado dentro de la clase
Vehicle. En otras palabras, tenemos un vehículo universal y podemos instalar pistas o ruedas en él. El código
produce el siguiente resultado:

ruedas: True True

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

pistas: True False
tracks: False True
tracks: False False

=== Herencia simple frente a herencia múltiple Como ya sabes, no hay obstáculos para usar la herencia
múltiple en Python. Puedes derivar cualquier clase nueva de más de una clase definida previamente. Solo hay
un «pero». El hecho de que puedas hacerlo no significa que tengas que hacerlo. No olvides que:

Una sola clase de herencia siempre es más simple, segura y fácil de entender y mantener.
La herencia múltiple siempre es arriesgada, ya que tienes muchas más oportunidades de cometer un
error al identificar estas partes de las superclases que influirán efectivamente en la nueva clase.
La herencia múltiple puede hacer que la anulación sea extremadamente difícil; además, el emplear la
función super() se vuelve ambiguo.
La herencia múltiple viola el principio de responsabilidad única (mas detalles aquí:
https://en.wikipedia.org/wiki/Single_responsibility_principle) ya que forma una nueva clase de dos (o más)
clases que no saben nada una de la otra.
Sugerimos encarecidamente la herencia múltiple como la última de todas las posibles soluciones: si
realmente necesitas las diferentes funcionalidades que ofrecen las diferentes clases, la composición
puede ser una mejor alternativa.

=== ¿Qué es el Orden de Resolución de Métodos (MRO) y por qué no todas las herencias tienen sentido? MRO,
en general, es una forma (puedes llamarlo una estrategia) en la que un lenguaje de programación en
particular escanea la parte superior de la jerarquía de una clase para encontrar el método que necesita
actualmente. Vale la pena enfatizar que los diferentes lenguajes usan MROs levemente (o incluso
completamente) diferentes. Python es único en este aspecto y sus costumbres son un poco específicas. Te
mostraremos cómo funciona el MRO de Python en dos casos peculiares que son ejemplos claros de problemas
que pueden ocurrir cuando intentas usar la herencia múltiple de manera demasiado imprudente. Comencemos
con un fragmento que inicialmente puede parecer simple.

class Top:
 def m_top(self):
 print("top")

class Middle(Top):
 def m_middle(self):
 print("middle")

class Bottom(Middle):
 def m_bottom(self):
 print("bottom")

object = Bottom()
object.m_bottom()
object.m_middle()
object.m_top()

Estamos seguros de que si analizas el fragmento tu mismo, no verás ninguna anomalía en él. Sí, tienes toda la
razón: parece claro y simple, y no genera preocupaciones. Si ejecutas el código, producirá el siguiente resultado
predecible:

bottom
middle

https://en.wikipedia.org/wiki/Single_responsibility_principle

14/02/2026 17:18 59/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

top

Sin sorpresas hasta ahora. Hagamos un pequeño cambio en este código. Echa un vistazo:

class Top:
 def m_top(self):
 print("top")

class Middle(Top):
 def m_middle(self):
 print("middle")

class Bottom(Middle, Top):
 def m_bottom(self):
 print("bottom")

object = Bottom()
object.m_bottom()
object.m_middle()
object.m_top()

¿Puedes ver la diferencia? Está escondida en esta línea:

class Bottom(Middle, Top):

De esta manera exótica, hemos convertido un código muy simple con una clara ruta de herencia única en un
misterioso acertijo de herencia múltiple. «¿Es válido?» Te puedes preguntar. Sí lo es. «¿Cómo es eso posible?»
te preguntas, esperamos que realmente sientas la necesidad de hacer esta pregunta. Como puedes ver, el
orden en el que se enumeran las dos superclases entre paréntesis cumple con la estructura del código: la clase
Middle precede a la clase Top, justo como en la ruta de herencia real. A pesar de su rareza, la muestra es
correcta y funciona como se esperaba, pero debe indicarse que esta notación no aporta ninguna funcionalidad
nueva ni significado adicional. Modifiquemos el código una vez más; ahora intercambiaremos ambos nombres
de superclase en la definición de clase Bottom. Así es como se ve el fragmento de código ahora:

class Top:
 def m_top(self):
 print("top")

class Middle(Top):
 def m_middle(self):
 print("middle")

class Bottom(Top, Middle):
 def m_bottom(self):
 print("bottom")

object = Bottom()
object.m_bottom()
object.m_middle()
object.m_top()

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

Para anticiparnos a tu pregunta, diremos que esta enmienda ha estropeado el código y ya no se ejecutará. Qué
pena. El orden que intentamos forzar (Top, Middle) es incompatible con la ruta de herencia que se deriva de la
estructura del código. A Python no le gustará. Esto es lo que veremos:

TypeError: Cannot create a consistent method resolution order (MRO) for bases Top,
Middle

Creemos que el mensaje habla por sí solo. El MRO de Python no se puede doblar ni violar, no solo porque esa es
la forma en que funciona Python, sino también porque es una regla que debes obedecer. === El Problema del
Diamante El segundo ejemplo del espectro de problemas que posiblemente pueden surgir de la herencia
múltiple está ilustrado por un problema clásico llamado problema del diamante. El nombre refleja la forma
del diagrama de herencia; observa la imagen:

Existe la superclase superior llamada A.
Existen dos subclases derivadas de A: B y C.
También está la subclase inferior llamada D, derivada de B y C (o C y B, ya que estas dos variantes
significan cosas diferentes en Python).

https://miguelangel.torresegea.es/wiki/_detail/info:cursos:netacad:python:pe2m3:pasted:20220705-101421.png?id=info%3Acursos%3Anetacad%3Apython%3Ape2m3%3Afundamentosoop
https://miguelangel.torresegea.es/wiki/_detail/info:cursos:netacad:python:pe2m3:pasted:20220705-101421.png?id=info%3Acursos%3Anetacad%3Apython%3Ape2m3%3Afundamentosoop
https://miguelangel.torresegea.es/wiki/_detail/info:cursos:netacad:python:pe2m3:pasted:20220705-101421.png?id=info%3Acursos%3Anetacad%3Apython%3Ape2m3%3Afundamentosoop
https://miguelangel.torresegea.es/wiki/_detail/info:cursos:netacad:python:pe2m3:pasted:20220705-101421.png?id=info%3Acursos%3Anetacad%3Apython%3Ape2m3%3Afundamentosoop

14/02/2026 17:18 61/62 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

¿Puedes ver el diamante ahí?

class A:
 pass

class B(A):
 pass

class C(A):
 pass

class D(B, C):
 pass

d = D()

La misma estructura, pero expresada en Python. Algunos lenguajes de programación no permiten la herencia
múltiple en absoluto y, como consecuencia, no te permitirán construir un diamante; este es el camino que Java
y C# han elegido seguir desde sus orígenes. Python, sin embargo, ha elegido una ruta diferente: permite la
herencia múltiple y no le importa si escribe y ejecuta código como el del editor. Pero no te olvides del MRO:
siempre está a cargo. Reconstruyamos nuestro ejemplo de la página anterior para hacerlo más parecido a un
diamante, como se muestra a continuación:

class Top:
 def m_top(self):
 print("top")

class Middle_Left(Top):
 def m_middle(self):
 print("middle_left")

class Middle_Right(Top):
 def m_middle(self):
 print("middle_right")

class Bottom(Middle_Left, Middle_Right):
 def m_bottom(self):
 print("bottom")

object = Bottom()
object.m_bottom()
object.m_middle()
object.m_top()

Nota: ambas clases Middle definen un método con el mismo nombre: m_middle(). Introduce una pequeña
incertidumbre en nuestra muestra, aunque estamos absolutamente seguros de que puedes responder la
siguiente pregunta clave: ¿cuál de los dos métodos m_middle() se invocará realmente cuando la siguiente
línea se ejecute?

Last
update:
05/07/2022
12:01

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 17:18

Object.m_middle()

En otras palabras, qué verás en la pantalla: middle_left o middle_right? No es necesario que te apresures,
¡piénselo dos veces y toma en cuenta el MRO de Python! ¿Estás listo? Sí, tienes razón. La invocación activará el
método m_middle(), que proviene de la clase Middle_Left. La explicación es simple: la clase aparece antes de
Middle_Right en la lista de herencia de la clase Bottom. Si deseas asegurarte de que no haya dudas al respecto,
intenta intercambiar estas dos clases en la lista y verifica los resultados. Si deseas experimentar algunas
impresiones más profundas sobre la herencia múltiple y las piedras preciosas, intenta modificar nuestro
fragmento y equipar la clase Upper con otro espécimen del método m_middle () e investigua su
comportamiento detenidamente. Como puedes ver, los diamantes pueden traer algunos problemas a tu vida,
tanto los reales como los que ofrece Python.

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

Last update: 05/07/2022 12:01

https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657047719

	Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos
	Enfoque procedimental frente al enfoque orientado a objetos
	Jerarquías de clase
	¿Qué es un objeto?
	Herencia
	¿Qué contiene un objeto?
	Tu primera clase
	Tu primer objeto
	Puntos Clave
	¿Qué es una pila?
	La pila: el enfoque procedimental
	La pila: el enfoque procedimental frente al enfoque orientado a objetos
	La pila, el enfoque orientado a objetos
	El enfoque orientado a objetos: una pila desde cero
	Puntos Clave
	ejercicio
	Objetivos
	Escenario

	ejercicio
	Objetivos
	Escenario

	ejercicio
	Objetivos
	Escenario

	Variables de instancia
	Variables de clase
	Comprobando la existencia de un atributo
	Puntos Clave
	Métodos a detalle
	La vida interna de clases y objetos
	Reflexión e introspección
	Investigando Clases
	Puntos Clave
	ejercicio
	Objetivos
	Escenario

	ejercicio
	Objetivos
	Escenario

	Objetivos
	Escenario

	ejercicio
	Objetivos
	Escenario

	Herencia: ¿por qué y cómo?
	Herencia: issubclass()
	Herencia: isinstance()
	Herencia: el operador is
	Cómo Python encuentra propiedades y métodos

