
14/02/2026 16:54 1/19 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Modulo 3 (intermedio): Los conceptos básicos del
enfoque orientado a objetos

introduccion

Herencia

Definamos uno de los conceptos fundamentales de la programación de objetos, llamado herencia. Cualquier
objeto vinculado a un nivel específico de una jerarquía de clases hereda todos los rasgos (así como los
requisitos y cualidades) definidos dentro de cualquiera de las superclases.

La clase de inicio del objeto puede definir nuevos rasgos (así como requisitos y cualidades) que serán
heredados por cualquiera de sus superclases.

No deberías tener ningún problema para hacer coincidir esta regla con ejemplos específicos, ya sea que se
aplique a animales o vehículos.

¿Qué contiene un objeto?

La programación orientada a objetos supone que cada objeto existente puede estar equipado con tres
grupos de atributos:

Un objeto tiene un nombre que lo identifica de forma exclusiva dentro de su namespace (aunque
también puede haber algunos objetos anónimos).
Un objeto tiene un conjunto de propiedades individuales que lo hacen original, único o sobresaliente
(aunque es posible que algunos objetos no tengan propiedades).

https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop:introduccion

Last
update:
05/07/2022
12:17

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657048646

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 16:54

Un objeto tiene un conjunto de habilidades para realizar actividades específicas, capaz de
cambiar el objeto en sí, o algunos de los otros objetos.

Existe una pista (aunque esto no siempre funciona) que te puede ayudar a identificar cualquiera de las tres
esferas anteriores. Cada vez que se describe un objeto y se usa:

Un sustantivo: probablemente se está definiendo el nombre del objeto.
Un adjetivo: probablemente se está definiendo una propiedad del objeto.
Un verbo: probablemente se está definiendo una actividad del objeto.

Dos ejemplos deberían servir como un buen ejemplo:

Un Cadillac rosa pasó rápidamente.
Nombre del objeto = Cadillac
Clase = Vehículos con ruedas
Propiedad = Color (rosa)
Actividad = Pasar (rápidamente)

Max es un gato grande que duerme todo el día.
Nombre del objeto = Max
Clase = Gato
Propiedad = Tamaño (Grande)
Actividad = Dormir (Todo el día)

Tu primera clase

La programación orientada a objetos es el arte de definir y expandir clases. Una clase es un modelo de una
parte muy específica de la realidad, que refleja las propiedades y actividades que se encuentran en el mundo
real.

Las clases definidas al principio son demasiado generales e imprecisas para cubrir el mayor número posible de
casos reales.

No hay obstáculo para definir nuevas subclases más precisas. Heredarán todo de su superclase, por lo que el
trabajo que se utilizó para su creación no se desperdicia.

La nueva clase puede agregar nuevas propiedades y nuevas actividades y, por lo tanto, puede ser más útil en
aplicaciones específicas. Obviamente, se puede usar como una superclase para cualquier número de subclases
recién creadas.

14/02/2026 16:54 3/19 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

El proceso no necesita tener un final. Puedes crear tantas clases como necesites.

La clase que se define no tiene nada que ver con el objeto: la existencia de una clase no significa que
ninguno de los objetos compatibles se creará automáticamente. La clase en sí misma no puede crear un
objeto: debes crearlo tu mismo y Python te permite hacerlo.

Es hora de definir la clase más simple y crear un objeto. Analiza el siguiente ejemplo:

<code python>class TheSimplestClass:
 pass

</code>

Hemos definido una clase. La clase es bastante pobre: no contiene propiedades ni actividades. Esta vacía, pero
eso no importa por ahora. Cuanto más simple sea la clase, mejor para nuestros propósitos.

La definición comienza con la palabra clave reservada class. La palabra clave reservada es seguida por
un identificador que le dará nombre a la clase (nota: no lo confundas con el nombre del objeto: estas son
dos cosas diferentes).

A continuación, se agregan dos puntos (:), como clases, como funciones, forman su propio bloque anidado. El
contenido dentro del bloque define todas las propiedades y actividades de la clase.

La palabra clave reservada pass llena la clase con nada. No contiene ningún método ni propiedades.

Tu primer objeto

La clase recién definida se convierte en una herramienta que puede crear nuevos objetos. La herramienta debe
usarse explícitamente, bajo demanda.

Imagina que deseas crear un objeto (exactamente uno) de la clase TheSimplestClass.

Para hacer esto, debes asignar una variable para almacenar el objeto recién creado de esa clase y crear un
objeto al mismo tiempo.

Se hace de la siguiente manera:

my_first_object = TheSimplestClass()

Nota:

El nombre de la clase intenta fingir que es una función, ¿puedes ver esto? Lo discutiremos pronto.
El objeto recién creado está equipado con todo lo que trae la clase. Como esta clase está completamente
vacía, el objeto también está vacío.

El acto de crear un objeto de la clase seleccionada también se llama instanciación (ya que el objeto se
convierte en una instancia de la clase).

Dejemos las clases en paz por un breve momento, ya que ahora diremos algunas palabras sobre pilas. Sabemos
que el concepto de clases y objetos puede no estar completamente claro todavía. No te preocupes, te
explicaremos todo muy pronto.

Last
update:
05/07/2022
12:17

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657048646

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 16:54

Puntos Clave

1. Una clase es una idea (más o menos abstracta) que se puede utilizar para crear varias encarnaciones; una
encarnación de este tipo se denomina objeto.

2. Cuando una clase se deriva de otra clase, su relación se denomina herencia. La clase que deriva de la otra
clase se denomina subclase. El segundo lado de esta relación se denomina superclase. Una forma de presentar
dicha relación es en un diagrama de herencia, donde:

Las superclases siempre se presentan encima de sus subclases.
Las relaciones entre clases se muestran como flechas dirigidas desde la subclase hacia su superclase.

3. Los objetos están equipados con:

Un nombre que los identifica y nos permite distinguirlos.
Un conjunto de propiedades (el conjunto puede estar vacío).
Un conjunto de métodos (también puede estar vacío).

4. Para definir una clase de Python,se necesita usar la palabra clave reservada class. Por ejemplo:

class This_Is_A_Class:
 pass

5. Para crear un objeto de la clase previamente definida, se necesita usar la clase como si fuera una función. Por
ejemplo:

this_is_an_object = This_Is_A_Class()

¿Qué es una pila?

Una pila es una estructura desarrollada para almacenar datos de una manera muy específica.
Imagina una pila de monedas. No puedes poner una moneda en ningún otro lugar sino en la parte superior de la
pila.

Del mismo modo, no puedes sacar una moneda de la pila desde ningún lugar que no sea la parte superior de la
pila. Si deseas obtener la moneda que se encuentra en la parte inferior, debes eliminar todas las monedas de
los niveles superiores.

El nombre alternativo para una pila (pero solo en la terminología de TI) es UEPS (LIFO son sus siglas en
inglés).

Es una abreviatura para una descripción muy clara del comportamiento de la pila: Último en Entrar - Primero
en Salir (Last In - First Out). La moneda que quedó en último lugar en la pila saldrá primero.

Una pila es un objeto con dos operaciones elementales, denominadas convencionalmente push (cuando un
nuevo elemento se coloca en la parte superior) y pop (cuando un elemento existente se retira de la parte
superior).

Las pilas se usan muy a menudo en muchos algoritmos clásicos, y es difícil imaginar la implementación de
muchas herramientas ampliamente utilizadas sin el uso de pilas.

14/02/2026 16:54 5/19 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Implementemos una pila en Python. Esta será una pila muy simple, y te mostraremos como hacerlo en dos
enfoques independientes: de manera procedimental y orientado a objetos.

La pila: el enfoque procedimental

Primero, debes decidir como almacenar los valores que llegarán a la pila. Sugerimos utilizar el método más
simple, y emplear una lista para esta tarea. Supongamos que el tamaño de la pila no está limitado de ninguna
manera. Supongamos también que el último elemento de la lista almacena el elemento superior.

La pila en sí ya está creada:

stack = []

Estamos listos para definir una función que coloca un valor en la pila. Aquí están las presuposiciones para
ello:

El nombre para la función es push.
La función obtiene un parámetro (este es el valor que se debe colocar en la pila).
La función no retorna nada.
La función agrega el valor del parámetro al final de la pila.

Así es como lo hemos hecho, echa un vistazo:

def push(val):
 stack.append(val)

Last
update:
05/07/2022
12:17

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657048646

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 16:54

Ahora es tiempo de que una función quite un valor de la pila. Así es como puedes hacerlo:

El nombre de la función es pop.
La función no obtiene ningún parámetro.
La función devuelve el valor tomado de la pila.
La función lee el valor de la parte superior de la pila y lo elimina.

La función esta aqui:

def pop():
 val = stack[-1]
 del stack[-1]
 return val

Nota: la función no verifica si hay algún elemento en la pila.

Armemos todas las piezas juntas para poner la pila en movimiento. El programa completo empuja (push) tres
números a la pila, los saca e imprime sus valores en pantalla.

stack = []

def push(val):
 stack.append(val)

def pop():
 val = stack[-1]
 del stack[-1]
 return val

push(3)
push(2)
push(1)

print(pop())
print(pop())
print(pop())

El programa muestra el siguiente texto en pantalla:

1
2
3

La pila: el enfoque procedimental frente al enfoque orientado a
objetos

La pila procedimental está lista. Por supuesto, hay algunas debilidades, y la implementación podría mejorarse
de muchas maneras (aprovechar las excepciones es una buena idea), pero en general la pila está
completamente implementada, y puedes usarla si lo necesitas.

14/02/2026 16:54 7/19 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Pero cuanto más la uses, más desventajas encontrarás. Éstas son algunas de ellas:

La variable esencial (la lista de la pila) es altamente vulnerable; cualquiera puede modificarla de forma
incontrolable, destruyendo la pila; esto no significa que se haya hecho de manera maliciosa; por el
contrario, puede ocurrir como resultado de un descuido, por ejemplo, cuando alguien confunde nombres
de variables; imagina que accidentalmente has escrito algo como esto:

stack[0] = 0

El funcionamiento de la pila estará completamente desorganizado.

También puede suceder que un día necesites más de una pila; tendrás que crear otra lista para el
almacenamiento de la pila, y probablemente otras funciones push y pop.
También puede suceder que no solo necesites funciones push y pop, pero también algunas otras
funciones; ciertamente podrías implementarlas, pero intenta imaginar qué sucedería si tuvieras docenas
de pilas implementadas por separado.

El enfoque orientado a objetos ofrece soluciones para cada uno de los problemas anteriores. Vamos a
nombrarlos primero:

La capacidad de ocultar (proteger) los valores seleccionados contra el acceso no autorizado se llama
encapsulamiento; no se puede acceder a los valores encapsulados ni modificarlos si deseas
utilizarlos exclusivamente.
Cuando tienes una clase que implementa todos los comportamientos de pila necesarios, puedes producir
tantas pilas como desees; no necesitas copiar ni replicar ninguna parte del código.
La capacidad de enriquecer la pila con nuevas funciones proviene de la herencia; puedes crear una
nueva clase (una subclase) que herede todos los rasgos existentes de la superclase y agregar algunos
nuevos.

Ahora escribamos una nueva implementación de pila desde cero. Esta vez, utilizaremos el enfoque orientado a
objetos, que te guiará paso a paso en el mundo de la programación de objetos.

La pila, el enfoque orientado a objetos

Por supuesto, la idea principal sigue siendo la misma. Usaremos una lista como almacenamiento de la pila. Solo
tenemos que saber como poner la lista en la clase.

Comencemos desde el principio: así es como comienza la pila orientada a objetos:

class Stack:

Last
update:
05/07/2022
12:17

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657048646

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 16:54

Ahora, esperamos dos cosas de la clase:

Queremos que la clase tenga una propiedad como el almacenamiento de la pila, tenemos que
«instalar» una lista dentro de cada objeto de la clase (nota: cada objeto debe tener su propia lista;
la lista no debe compartirse entre diferentes pilas).
Despues, queremos que la lista esté oculta de la vista de los usuarios de la clase.

¿Cómo se hace esto?

A diferencia de otros lenguajes de programación, Python no tiene medios para permitirte declarar una
propiedad como esa.

En su lugar, debes agregar una instrucción específica. Las propiedades deben agregarse a la clase
manualmente.

¿Cómo garantizar que dicha actividad tiene lugar cada vez que se crea una nueva pila?

Existe una manera simple de hacerlo, tienes que equipar a la clase con una función específica:

Tiene que ser nombrada de forma estricta.
Se invoca implícitamente cuando se crea el nuevo objeto.

Dicha función es llamada el constructor, ya que su propósito general es construir un nuevo objeto. El
constructor debe saber todo acerca de la estructura del objeto y debe realizar todas las inicializaciones
necesarias.

Agreguemos un constructor muy simple a la nueva clase. Echa un vistazo al código:

class Stack:
 def __init__(self):
 print("¡Hola!")

stack_object = Stack()

Expliquemos más a detalle:

El nombre del constructor es siempre __init__.
Tiene que tener al menos un parámetro (discutiremos esto más adelante); el parámetro se usa para
representar el objeto recién creado: puedes usar el parámetro para manipular el objeto y enriquecerlo
con las propiedades necesarias; harás uso de esto pronto.
Nota: el parámetro obligatorio generalmente se denomina self, es solo una sugerencía, pero deberías
seguirla, simplifica el proceso de lectura y comprensión de tu código.

class Stack: # Definiendo la clase de la pila.
 def __init__(self): # Definiendo la función del constructor.
 print("¡Hola!")

stack_object = Stack() # Instanciando el objeto.

Aquí está su salida:

¡Hola!

Nota: no hay rastro de la invocación del constructor dentro del código. Ha sido invocado implícita y

14/02/2026 16:54 9/19 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

automáticamente. Hagamos uso de eso ahora.

Cualquier cambio que realices dentro del constructor que modifique el estado del parámetro self se verá
reflejado en el objeto recien creado.

Esto significa que puedes agregar cualquier propiedad al objeto y la propiedad permanecerá allí hasta que el
objeto termine su vida o la propiedad se elimine explícitamente.

Ahora agreguemos solo una propiedad al nuevo objeto, una lista para la pila. La nombraremos stack_list.

class Stack:
 def __init__(self):
 self.stack_list = []

stack_object = Stack()
print(len(stack_object.stack_list))

Nota:

Hemos usado la notación punteada, al igual que cuando se invocan métodos. Esta es la manera
general para acceder a las propiedades de un objeto: debes nombrar el objeto, poner un punto (.)
después de el, y especificar el nombre de la propiedad deseada, ¡no uses paréntesis! No deseas invocar
un método, deseas acceder a una propiedad.
Si estableces el valor de una propiedad por primera vez (como en el constructor), lo estás creando; a
partir de ese momento, el objeto tiene la propiedad y está listo para usar su valor.
Hemos hecho algo más en el código: hemos intentado acceder a la propiedad stack_list desde fuera de la
clase inmediatamente después de que se haya creado el objeto; queremos verificar la longitud actual de
la pila, ¿lo hemos logrado?

Si, por supuesto: el código produce el siguiente resultado:

0

Esto no es lo que queremos de la pila. Nosotros queremos que stack_list este escondida del mundo exterior. ¿Es
eso posible?

Si, y es simple, pero no muy intuitivo.

Echa un vistazo: hemos agregado dos guiones bajos antes del nombre stack_list, nada mas:

class Stack:
 def __init__(self):
 self.__stack_list = []

stack_object = Stack()
print(len(stack_object.__stack_list))

El cambio invalida el programa.

¿Por qué?

Cuando cualquier componente de la clase tiene un nombre que comienza con dos guiones bajos (__), se
vuelve privado, esto significa que solo se puede acceder desde dentro de la clase.

No puedes verlo desde el mundo exterior. Así es como Python implementa el concepto de encapsulación.

Last
update:
05/07/2022
12:17

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657048646

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 16:54

Ejecuta el programa para probar nuestras suposiciones: una excepción AttributeError debe ser generada.

El enfoque orientado a objetos: una pila desde cero

Ahora es el momento de que las dos funciones (métodos) implementen las operaciones push y pop. Python
supone que una función de este tipo debería estar inmersa dentro del cuerpo de la clase, como el
constructor.

Queremos invocar estas funciones para agregar(push) y quitar(pop) valores de la pila. Esto significa que ambos
deben ser accesibles para el usuario de la clase (en contraste con la lista previamente construida, que está
oculta para los usuarios de la clase ordinaria).

Tal componente es llamado público, por ello no puede comenzar su nombre con dos (o más) guiones
bajos. Hay un requisito más el nombre no debe tener más de un guión bajo.

Las funciones en sí son simples. Echa un vistazo:

class Stack:
 def __init__(self):
 self.__stack_list = []

 def push(self, val):
 self.__stack_list.append(val)

 def pop(self):
 val = self.__stack_list[-1]
 del self.__stack_list[-1]
 return val

stack_object = Stack()

stack_object.push(3)
stack_object.push(2)
stack_object.push(1)

print(stack_object.pop())
print(stack_object.pop())
print(stack_object.pop())

Sin embargo, hay algo realmente extraño en el código. Las funciones parecen familiares, pero tienen más
parámetros que sus contrapartes procedimentales.

Aquí, ambas funciones tienen un parámetro llamado self en la primera posición de la lista de parámetros.

¿Es necesario? Si, lo es.

Todos los métodos deben tener este parámetro. Desempeña el mismo papel que el primer parámetro
constructor.

Permite que el método acceda a entidades (propiedades y actividades / métodos) del objeto. No
puedes omitirlo. Cada vez que Python invoca un método, envía implícitamente el objeto actual como el primer
argumento.

14/02/2026 16:54 11/19 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Esto significa que el método está obligado a tener al menos un parámetro, que Python mismo utiliza,
no tienes ninguna influencia sobre el.

Si tu método no necesita ningún parámetro, este debe especificarse de todos modos. Si está diseñado para
procesar solo un parámetro, debes especificar dos, ya que la función del primero sigue siendo la misma.

Hay una cosa más que requiere explicación: la forma en que se invocan los métodos desde la variable
__stack_list.

Afortunadamente, es mucho más simple de lo que parece:

La primera etapa entrega el objeto como un todo → self.
A continuación, debes llegar a la lista __stack_list → self.__stack_list.
Con __stack_list lista para ser usada, puedes realizar el tercer y último paso →
self.__stack_list.append(val).

La declaración de la clase está completa y se han enumerado todos sus componentes. La clase está lista para
usarse.

Tener tal clase abre nuevas posibilidades. Por ejemplo, ahora puedes hacer que más de una pila se comporte de
la misma manera. Cada pila tendrá su propia copia de datos privados, pero utilizará el mismo conjunto de
métodos.

Esto es exactamente lo que queremos para este ejemplo.

Analiza el código:

class Stack:
 def __init__(self):
 self.__stack_list = []

 def push(self, val):
 self.__stack_list.append(val)

 def pop(self):
 val = self.__stack_list[-1]
 del self.__stack_list[-1]
 return val

stack_object_1 = Stack()
stack_object_2 = Stack()

stack_object_1.push(3)
stack_object_2.push(stack_object_1.pop())

print(stack_object_2.pop())

Existen dos pilas creadas a partir de la misma clase base. Trabajan independientemente. Puedes crear
más si quieres.

Ejecuta el código en el editor y observa que sucede. Realiza tus propios experimentos.

Analiza el fragmento de código a continuación: hemos creado tres objetos de la clase Stack. Después, hemos
hecho malabarismos. Intenta predecir el valor que se muestra en la pantalla.

class Stack:

Last
update:
05/07/2022
12:17

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657048646

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 16:54

 def __init__(self):
 self.__stack_list = []

 def push(self, val):
 self.__stack_list.append(val)

 def pop(self):
 val = self.__stack_list[-1]
 del self.__stack_list[-1]
 return val

little_stack = Stack()
another_stack = Stack()
funny_stack = Stack()

little_stack.push(1)
another_stack.push(little_stack.pop() + 1)
funny_stack.push(another_stack.pop() - 2)

print(funny_stack.pop())

Ahora vamos un poco mas lejos. Vamos a agregar una nueva clase para manejar pilas.

La nueva clase debería poder evaluar la suma de todos los elementos almacenados actualmente en la
pila.

No queremos modificar la pila previamente definida. Ya es lo suficientemente buena en sus aplicaciones, y no
queremos que cambie de ninguna manera. Queremos una nueva pila con nuevas capacidades. En otras
palabras, queremos construir una subclase de la ya existente clase Stack.

El primer paso es fácil: solo define una nueva subclase que apunte a la clase que se usará como
superclase.

Así es como se ve:

class AddingStack(Stack):
 pass

La clase aún no define ningún componente nuevo, pero eso no significa que esté vacía. Obtiene (hereda)
todos los componentes definidos por su superclase, el nombre de la superclase se escribe después de los
dos puntos, después del nombre de la nueva clase.

Esto es lo que queremos de la nueva pila:

Queremos que el método push no solo inserte el valor en la pila, sino que también sume el valor a la
variable sum.
Queremos que la función pop no solo extraiga el valor de la pila, sino que también reste el valor de la
variable sum.

En primer lugar, agreguemos una nueva variable a la clase. Será una variable privada, al igual que la lista de
pila. No queremos que nadie manipule el valor de la variable sum.

Como ya sabes, el constructor agrega una nueva propiedad a la clase. Ya sabes como hacerlo, pero hay algo
realmente intrigante dentro del constructor. Echa un vistazo:

14/02/2026 16:54 13/19 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

class AddingStack(Stack):
 def __init__(self):
 Stack.__init__(self)
 self.__sum = 0

La segunda línea del cuerpo del constructor crea una propiedad llamada __sum, almacenará el total de todos
los valores de la pila.

Pero la línea anterior se ve diferente. ¿Qué hace? ¿Es realmente necesaria? Sí lo es.

Al contrario de muchos otros lenguajes, Python te obliga a invocar explícitamente el constructor de una
superclase. Omitir este punto tendrá efectos nocivos: el objeto se verá privado de la lista __stack_list. Tal pila
no funcionará correctamente.

Esta es la única vez que puedes invocar a cualquiera de los constructores disponibles explícitamente; se puede
hacer dentro del constructor de la superclase.

Ten en cuenta la sintaxis:

Se especifica el nombre de la superclase (esta es la clase cuyo constructor se desea ejecutar).
Se pone un punto (.) después del nombre.
Se especifica el nombre del constructor.
Se debe señalar al objeto (la instancia de la clase) que debe ser inicializado por el constructor; es por eso
que se debe especificar el argumento y utilizar la variable self aquí; recuerda: invocar cualquier
método (incluidos los constructores) desde fuera de la clase nunca requiere colocar el
argumento self en la lista de argumentos, invocar un método desde dentro de la clase exige el uso
explícito del argumento self, y tiene que ser el primero en la lista.

Nota: generalmente es una práctica recomendada invocar al constructor de la superclase antes de cualquier
otra inicialización que desees realizar dentro de la subclase. Esta es la regla que hemos seguido en el código.

En segundo lugar, agreguemos dos métodos. Pero, ¿realmente estamos agregándolos? Ya tenemos estos
métodos en la superclase. ¿Podemos hacer algo así?

Si podemos. Significa que vamos a cambiar la funcionalidad de los métodos, no sus nombres. Podemos
decir con mayor precisión que la interfaz (la forma en que se manejan los objetos) de la clase permanece igual
al cambiar la implementación al mismo tiempo.

Comencemos con la implementación de la función push. Esto es lo que esperamos de la función:

Agregar el valor a la variable __sum.
Agregar el valor a la pila.

Nota: la segunda actividad ya se implementó dentro de la superclase, por lo que podemos usarla. Además,
tenemos que usarla, ya que no hay otra forma de acceder a la variable __stackList.

Así es como se mira el método push dentro de la subclase:

def push(self, val):
 self.__sum += val
 Stack.push(self, val)

Toma en cuenta la forma en que hemos invocado la implementación anterior del método push (el disponible en
la superclase):

Tenemos que especificar el nombre de la superclase; esto es necesario para indicar claramente la clase
que contiene el método, para evitar confundirlo con cualquier otra función del mismo nombre.
Tenemos que especificar el objeto de destino y pasarlo como primer argumento (no se agrega

Last
update:
05/07/2022
12:17

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657048646

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 16:54

implícitamente a la invocación en este contexto).

Se dice que el método push ha sido anulado, el mismo nombre que en la superclase ahora representa una
funcionalidad diferente.

Esta es la nueva función pop:

def pop(self):
 val = Stack.pop(self)
 self.__sum -= val
 return val

Hasta ahora, hemos definido la variable __sum, pero no hemos proporcionado un método para obtener su valor.
Parece estar escondido. ¿Cómo podemos mostrarlo y que al mismo tiempo que se proteja de modificaciones?

Tenemos que definir un nuevo método. Lo nombraremos get_sum. Su única tarea será devolver el valor
de __sum.

Aquí está:

def get_sum(self):
 return self.__sum

Entonces, veamos el programa en el editor. El código completo de la clase está ahí. Podemos ahora verificar su
funcionamiento, y lo hacemos con la ayuda de unas pocas líneas de código adicionales.

Como puedes ver, agregamos cinco valores subsiguientes en la pila, imprimimos su suma y los sacamos todos
de la pila.

class Stack:
 def __init__(self):
 self.__stack_list = []

 def push(self, val):
 self.__stack_list.append(val)

 def pop(self):
 val = self.__stack_list[-1]
 del self.__stack_list[-1]
 return val

class AddingStack(Stack):
 def __init__(self):
 Stack.__init__(self)
 self.__sum = 0

 def get_sum(self):
 return self.__sum

 def push(self, val):
 self.__sum += val
 Stack.push(self, val)

 def pop(self):

14/02/2026 16:54 15/19 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

 val = Stack.pop(self)
 self.__sum -= val
 return val

stack_object = AddingStack()

for i in range(5):
 stack_object.push(i)
print(stack_object.get_sum())

for i in range(5):
 print(stack_object.pop())

Puntos Clave

1. Una pila es un objeto diseñado para almacenar datos utilizando el modelo LIFO. La pila normalmente realiza
al menos dos operaciones, llamadas push() y pop().

2. La implementación de la pila en un modelo procedimental plantea varios problemas que pueden resolverse
con las técnicas ofrecidas por la POO (Programación Orientada a Objetos).

3. Un método de clase es en realidad una función declarada dentro de la clase y capaz de acceder a todos los
componentes de la clase.

4. La parte de la clase en Python responsable de crear nuevos objetos se llama constructor y se implementa
como un método de nombre __init__.

5. Cada declaración de método de clase debe contener al menos un parámetro (siempre el primero)
generalmente denominado self, y es utilizado por los objetos para identificarse a sí mismos.

6. Si queremos ocultar alguno de los componentes de una clase del mundo exterior, debemos comenzar su
nombre con __. Estos componentes se denominan privados.

ejercicio

Objetivos

Mejorar las habilidades del estudiante para definir clases.
Emplear clases existentes para crear nuevas clases equipadas con nuevas funcionalidades.

Escenario

Recientemente te mostramos cómo extender las posibilidades de Stack definiendo una nueva clase (es decir,
una subclase) que retiene todos los rasgos heredados y agrega algunos nuevos.

Tu tarea es extender el comportamiento de la clase Stack de tal manera que la clase pueda contar todos los
elementos que son agregados (push) y quitados (pop). Emplea la clase Stack que proporcionamos en el editor.

Sigue las sugerencias:

Introduce una propiedad diseñada para contar las operaciones pop y nombrarla de una manera que garantice

Last
update:
05/07/2022
12:17

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657048646

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 16:54

que esté oculta. Inicializala a cero dentro del constructor. Proporciona un método que devuelva el valor
asignado actualmente al contador (nómbralo get_counter()).

class Stack:
 def __init__(self):
 self.__stk = []

 def push(self, val):
 self.__stk.append(val)

 def pop(self):
 val = self.__stk[-1]
 del self.__stk[-1]
 return val

class CountingStack(Stack):
 def __init__(self):
 #
 # Llena el constructor con acciones apropiadas.
 #

 def get_counter(self):
 #
 # Presenta el valor actual del contador al mundo.
 #

 def pop(self):
 #
 # Haz un pop y actualiza el contador.
 #

stk = CountingStack()
for i in range(100):
 stk.push(i)
 stk.pop()
print(stk.get_counter())

Completa el código en el editor. Ejecútalo para comprobar si tu código da como salida 100.

ejercicio

Objetivos

Mejorar las habilidades del estudiante para definir clases desde cero.
Implementar estructuras de datos estándar como clases.

Escenario

Como ya sabes, una pila es una estructura de datos que realiza el modelo LIFO (último en entrar, primero en

14/02/2026 16:54 17/19 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

salir). Es fácil y ya te has acostumbrado a ello perfectamente.

Probemos algo nuevo ahora. Una cola (queue) es un modelo de datos caracterizado por el término FIFO: primero
en entrar, primero en salir. Nota: una cola (fila) regular que conozcas de las tiendas u oficinas de correos
funciona exactamente de la misma manera: un cliente que llegó primero también es el primero en ser atendido.

Tu tarea es implementar la clase Queue con dos operaciones básicas:

put(elemento), que coloca un elemento al final de la cola.
get(), que toma un elemento del principio de la cola y lo devuelve como resultado (la cola no puede estar
vacía para realizarlo correctamente).

Sigue las sugerencias:

Emplea una lista como tu almacenamiento (como lo hicimos con la pila).
put() debe agregar elementos al principio de la lista, mientras que get() debe eliminar los elementos del
final de la lista.
Define una nueva excepción llamada QueueError (elige una excepción de la cual se derivará) y generala
cuando get() intentes operar en una lista vacía.

Completa el código que te proporcionamos en el editor. Ejecútalo para comprobar si tu salida es similar a la
nuestra.

Salida Esperada

1
perro
False
Error de Cola

class QueueError(???): # Eligir la clase base para la nueva excepción.
 #
 # Escribe código aquí.
 #

class Queue:
 def __init__(self):
 #
 # Escribe código aquí.
 #

 def put(self, elem):
 #
 # Escribe código aquí.
 #

 def get(self):
 #
 # Escribe código aquí.
 #

que = Queue()
que.put(1)
que.put("perro")
que.put(False)

Last
update:
05/07/2022
12:17

info:cursos:netacad:python:pe2m3:fundamentosoop https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657048646

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 16:54

try:
 for i in range(4):
 print(que.get())
except:
 print("Error de Cola")

ejercicio

Objetivos

Mejorar las habilidades del estudiante para definir subclases.
Agregar nueva funcionalidad a una clase existente.

Escenario

Tu tarea es extender ligeramente las capacidades de la clase Queue. Queremos que tenga un método sin
parámetros que devuelva True si la cola está vacía y False de lo contrario.

Completa el código que te proporcionamos en el editor. Ejecútalo para comprobar si genera un resultado similar
al nuestro.

Salida esperada:

1
perro
False
Cola vacía

class QueueError(???):
 pass

class Queue:
 #
 # Código del laboratorio anterior.
 #

class SuperQueue(Queue):
 #
 # Escribe código nuevo aquí.
 #

que = SuperQueue()
que.put(1)
que.put("perro")
que.put(False)
for i in range(4):
 if not que.isempty():
 print(que.get())

14/02/2026 16:54 19/19 Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

 else:
 print("Cola vacía")

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657048646

Last update: 05/07/2022 12:17

https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:fundamentosoop?rev=1657048646

	Modulo 3 (intermedio): Los conceptos básicos del enfoque orientado a objetos
	Herencia
	¿Qué contiene un objeto?
	Tu primera clase
	Tu primer objeto
	Puntos Clave
	¿Qué es una pila?
	La pila: el enfoque procedimental
	La pila: el enfoque procedimental frente al enfoque orientado a objetos
	La pila, el enfoque orientado a objetos
	El enfoque orientado a objetos: una pila desde cero
	Puntos Clave
	ejercicio
	Objetivos
	Escenario

	ejercicio
	Objetivos
	Escenario

	ejercicio
	Objetivos
	Escenario

