14/02/2026 18:00 1/21 Mddulo 3: Programacion Orientada a Objetos - Herencia

Mddulo 3: Programacion Orientada a Objetos -
Herencia

Herencia: ;por qué y como?

Antes de comenzar a hablar sobre la herencia, queremos presentar un nuevo y practico mecanismo utilizado
por las clases y los objetos de Python: es la forma en que el objeto puede presentarse a si mismo.

Comencemos con un ejemplo.

Star:
~_init (self, name, galaxy):
self.name = name
self.galaxy = galaxy

sun Star("Sol", "Via Lactea"
sun

El programa imprime solo una linea de texto, que en nuestro caso es:
< main__ .Star object at 0x7f1074cc7c50>

Si ejecutas el mismo cédigo en tu computadora, veras algo muy similar, aunque el nimero hexadecimal (la
subcadena que comienza con 0x) sera diferente, ya que es solo un identificador de objeto interno utilizado por
Python, y es poco probable que aparezca igual cuando se ejecuta el mismo cédigo en un entorno diferente.

Como puedes ver, la impresién aqui no es realmente Util, y algo mas especifico, es preferible.
Afortunadamente, Python ofrece tal funcion.

Cuando Python necesita que alguna clase u objeto deba ser presentado como una cadena (es recomendable
colocar el objeto como argumento en la invocacidn de la funcién print()), intenta invocar un método llamado
__str_ () del objeto y emplear la cadena que devuelve.

El método por default str () devuelve la cadena anterior: fea y poco informativa. Puedes cambiarlo
definiendo tu propio método.

Star:
~_init (self, name, galaxy
self.name = name
self.galaxy = galaxy

str (self
self.name + ' en ' + self.galaxy

sun Star("Sol", "Via Lactea"
sun

El método nuevo _ str__ () genera una cadena que consiste en los nombres de la estrella y la galaxia, nada
especial, pero los resultados de impresién se ven mejor ahora, ;no?

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last

gg;joa;/ez:ozz info:cursos:netacad:python:pe2m3:herencia https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:herencia?rev=1657048946

12:22

El término herencia es mas antiguo que la programacién de computadoras, y describe la practica comin de
pasar diferentes bienes de una persona a otra después de la muerte de esa persona. El término, cuando se
relaciona con la programacién de computadoras, tiene un significado completamente diferente.

remn

AL B

Definamos el término para nuestros propdsitos:

La herencia es una practica comun (en la programacién de objetos) de pasar atributos y métodos de la
superclase (definida y existente) a una clase recién creada, llamada subclase.

En otras palabras, la herencia es una forma de construir una nueva clase, no desde cero, sino
utilizando un repertorio de rasgos ya definido. La nueva clase hereda (y esta es la clave) todo el
equipamiento ya existente, pero puedes agregar algo nuevo si es necesario.

Gracias a eso, es posible construir clases mas especializadas (mas concretas) utilizando algunos
conjuntos de reglas y comportamientos generales predefinidos.

El factor mas importante del proceso es la relacion entre la superclase y todas sus subclases (nota: si B es una
subclase de Ay C es una subclase de B, esto también significa que C es una subclase de A, ya que la relacién es
totalmente transitiva).

Aqui se presenta un ejemplo muy simple de herencia de dos niveles:

Vehicle:

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 18:00

14/02/2026 18:00 3/21 Mddulo 3: Programacion Orientada a Objetos - Herencia

LandVehicle(Vehicle

TrackedVehicle(LandVehicle

Todas las clases presentadas estan vacias por ahora, ya que te mostraremos cémo funcionan las relaciones
mutuas entre las superclases y las subclases. Las Ilenaremos con contenido pronto.

Podemos decir que:

¢ La clase Vehicle es la superclase para clases LandVehicle y TrackedVehicle.
¢ La clase LandVehicle es una subclase de Vehicle y la superclase de TrackedVehicle al mismo tiempo.
¢ La clase TrackedVehicle es una subclase tanto de Vehicle y LandVehicle.

El conocimiento anterior proviene de la lectura del cédigo (en otras palabras, lo sabemos porque podemos
verlo).

¢ Python sabe lo mismo? ;Es posible preguntarle a Python al respecto? Si lo es.

Herencia: issubclass()

Python ofrece una funcién que es capaz de identificar una relacién entre dos clases, y aunque su
diagndstico no es complejo, puede verificar si una clase particular es una subclase de cualquier otra
clase.

Asi es como se ve:
issubclass(ClassOne, ClassTwo

La funciéon devuelve True si ClassOne es una subclase de ClassTwo, y False de lo contrario.

Vamos a verlo en accién, puede sorprenderte.

Vehicle:

LandVehicle(Vehicle

TrackedVehicle(LandVehicle

clsl Vehicle, LandVehicle, TrackedVehicle
cls2 Vehicle, LandVehicle, TrackedVehicle
issubclass(clsl, cls2 end="\t"

Hay dos bucles anidados. Su propdésito es verificar todos los pares de clases ordenadas posibles y que
imprima los resultados de la verificacion para determinar si el par coincide con la relacién subclase-

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:22

info:cursos:netacad:python:pe2m3:herencia https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:herencia?rev=1657048946

superclase.

Ejecuta el cédigo. El programa produce el siguiente resultado:

True False False
True True False
True True True

Hagamos que el resultado sea mas legible:

| esuna subclasede - Vehicle LandVehicle TrackedVehicle
Vehicle True False False
LandVehicle True True False
TrackedVehicle True True True

Existe una observacion importante que hacer: cada clase se considera una subclase de si misma.
Herencia: isinstance()

Como ya sabes, un objeto es la encarnacidn de una clase. Esto significa que el objeto es como un pastel
horneado usando una receta que se incluye dentro de la clase.

Esto puede generar algunos problemas.

Supongamos que tienes un pastel (por ejemplo, resultado de un argumento pasado a tu funcién). Deseas saber
que receta se ha utilizado para prepararlo. ;Por qué? Porque deseas saber que esperar de él, por ejemplo, si
contiene nueces o no, lo cual es informacién crucial para ciertas personas.

Del mismo modo, puede ser crucial si el objeto tiene (o no tiene) ciertas caracteristicas. En otras palabras, si es
un objeto de cierta clase o no.

Tal hecho podria ser detectado por la funcién llamada isinstance():
isinstance(objectName, ClassName

La funcién devuelve True si el objeto es una instancia de la clase, o False de lo contrario.

Ser una instancia de una clase significa que el objeto (el pastel) se ha preparado utilizando una
receta contenida en la clase o en una de sus superclases.

No lo olvides: si una subclase contiene al menos las mismas caracteristicas que cualquiera de sus superclases,
significa que los objetos de la subclase pueden hacer lo mismo que los objetos derivados de la superclase, por
lo tanto, es una instancia de su clase de inicio y cualquiera de sus superclases.

Vehicle:

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 18:00

14/02/2026 18:00 5/21 Mddulo 3: Programacion Orientada a Objetos - Herencia

LandVehicle(Vehicle

TrackedVehicle(LandVehicle

my vehicle = Vehicle
my land vehicle = LandVehicle
my tracked vehicle = TrackedVehicle

obj my vehicle, my land vehicle, my tracked vehicle
cls Vehicle, LandVehicle, TrackedVehicle
isinstance(obj, cls), end="\t"

Hemos creado tres objetos, uno para cada una de las clases. Luego, usando dos bucles anidados, verificamos
todos los pares posibles de clase de objeto para averiguar si los objetos son instancias de las clases.

Ejecuta el cddigo.

Esto es lo que obtenemos:

True False False
True True False
True True True

Hagamos que el resultado sea mas legible:

| esunainstanciade - Vehicle LandVehicle TrackedVehicle
my_vehicle True False False
my_land_vehicle True True False
my_tracked_vehicle True True True

Herencia: el operador is

También existe un operador de Python que vale la pena mencionar, ya que se refiere directamente a los
objetos: aqui esta:

object one object two

El operador is verifica si dos variables, en este caso (object one y object two) se refieren al mismo
objeto.

No olvides que las variables no almacenan los objetos en si, sino solo los identificadores que apuntan a la
memoria interna de Python.

Asignar un valor de una variable de objeto a otra variable no copia el objeto, sino solo su identificador. Es por
ello que un operador como is puede ser muy Util en ciertas circunstancias.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last

update: info:cursos:netacad:python:pe2m3:herencia https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:herencia?rev=1657048946

05/07/2022
12:22

Echa un vistazo al cédigo en el editor.

SampleClass:
~_init (self, val
self.val val

object 1 = SampleClass
object 2 = SampleClass
object 3 = object 1
object 3.val +

object 1 object 2

object 2 object 3

object 3 object 1

object 1.val, object 2.val, object 3.val
string 1 "Mary tenia un "
string 2 "Mary tenia un corderito"
string 1 += "corderito"

string 1 string 2, string 1 string 2

Analicémoslo:

¢ Existe una clase muy simple equipada con un constructor simple, que crea una sola propiedad. La clase
se usa para instanciar dos objetos. El primero se asigna a otra variable, y su propiedad val se incrementa

€n uno.

¢ Luego, el operador is se aplica tres veces para verificar todos los pares de objetos posibles, y todos los

valores de la propiedad val son mostrados en pantalla.

¢ La Ultima parte del cédigo lleva a cabo otro experimento. Después de tres tareas, ambas cadenas
contienen los mismos textos, pero estos textos se almacenan en diferentes objetos.

El cédigo imprime:

False
False
True
121
True False

Los resultados prueban que object 1y object 3 son en realidad los mismos objetos, mientras que string 1y

string 2 no lo son, a pesar de que su contenido sea el mismo.

Como Python encuentra propiedades y métodos

Ahora veremos como Python trata con los métodos de herencia.

Super:
__init (self, name
self.name name

_ str_ (self

https://miguelangel.torresegea.es/wiki/

Printed on 14/02/2026 18:00

14/02/2026 18:00 7/21 Mddulo 3: Programacion Orientada a Objetos - Herencia

"Mi nombre es " + self.name + ".

Sub (Super
__init (self, name
Super. init (self, name

obj Sub("Andy"
obj

Vamos a analizarlo:

¢ Existe una clase llamada Super, que define su propio constructor utilizado para asignar la propiedad del
objeto, llamada name.

¢ La clase también define el método str__ (), lo que permite que la clase pueda presentar su identidad
en forma de texto.

¢ La clase se usa luego como base para crear una subclase llamada Sub. La clase Sub define su propio
constructor, que invoca el de la superclase. Toma nota de como lo hemos hecho: Super. _init_ (self,
name).

e Hemos nombrado explicitamente la superclase y hemos apuntado al método para invocar a
__init_ (), proporcionando todos los argumentos necesarios.

¢ Hemos instanciado un objeto de la clase Sub y lo hemos impreso.

El codigo da como salida:
Mi nombre es Andy.

Nota: Como no existe el método str__ () dentro de la clase Sub, la cadena a imprimir se producira dentro
de la clase Super. Esto significa que el método str_ () ha sido heredado por la clase Sub.

Super:
~_init (self, name
self.name name

~ str (self
"Mi nombre es " + self.name + ".

Sub (Super
__init (self, name
super(). init (name

obj Sub("Andy"
obj

Lo hemos modificado para mostrarte otro método de acceso a cualquier entidad definida dentro de la
superclase.

En el ejemplo anterior, nombramos explicitamente la superclase. En este ejemplo, hacemos uso de la funcién
super(), la cual accede a la superclase sin necesidad de conocer su nombre:

super(). init (name

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:22

info:cursos:netacad:python:pe2m3:herencia https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:herencia?rev=1657048946

La funcidén super() crea un contexto en el que no tiene que (ademas, no debe) pasar el argumento propio al
método que se invoca; es por eso que es posible activar el constructor de la superclase utilizando solo un
argumento.

Nota: puedes usar este mecanismo no solo para invocar al constructor de la superclase, pero también
para obtener acceso a cualquiera de los recursos disponibles dentro de la superclase.

Intentemos hacer algo similar, pero con propiedades (mas precisamente con: variables de clase).

Probando propiedades: variables de clase.
Super:
supVar

Sub (Super
subVar

obj = Sub

obj.subVar
obj.supVar

Como puedes observar, la clase Super define una variable de clase llamada supVar, y la clase Sub define una
variable llamada subVar.

Ambas variables son visibles dentro del objeto de clase Sub, es por ello que el céddigo da como salida:

El mismo efecto se puede observar con variables de instancia, observa el segundo ejemplo en el editor.

Probando propiedades: variables de instancia.
Super:
__init (self
self.supVar

Sub (Super
__init (self
super(). init

self.subVar

obj Sub

obj.subVar
obj.supVar

El constructor de la clase Sub crea una variable de instancia llamada subVar, mientras que el constructor de
Super hace lo mismo con una variable de nombre supVar. Al igual que el ejemplo anterior, ambas variables son
accesibles desde el objeto de clase Sub.

La salida del programa es:

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 18:00

14/02/2026 18:00 9/21 Mddulo 3: Programacion Orientada a Objetos - Herencia

12
11

Nota: La existencia de la variable supVar obviamente esta condicionada por la invocacién del constructor de la
clase Super. Omitirlo daria como resultado la ausencia de la variable en el objeto creado (pruébalo tu mismo).

Ahora es posible formular una declaracién general que describa el comportamiento de Python.
Cuando intentes acceder a una entidad de cualquier objeto, Python intentard (en este orden):

¢ Encontrarla dentro del objeto mismo.
e Encontrarla en todas las clases involucradas en la linea de herencia del objeto de abajo hacia arriba.

Si ambos intentos fallan, una excepcién (AttributeError) sera generada.

La primera condicién puede necesitar atencién adicional. Como sabes, todos los objetos derivados de una clase
en particular pueden tener diferentes conjuntos de atributos, y algunos de los atributos pueden agregarse al
objeto mucho tiempo después de la creacién del objeto.

El ejemplo en el editor resume esto en una linea de herencia de tres niveles.

Levell:
variable 1
__init (self
self.var 1

fun 1(self

Level2(Levell
variable 2
__init (self
super(). init
self.var 2

fun 2(self

Level3(Level2

variable 3
__init (self
super(). init
self.var 3
fun 3(self
obj Level3

obj.variable 1, obj.var 1, obj.fun 1
obj.variable 2, obj.var 2, obj.fun 2
obj.variable 3, obj.var 3, obj.fun 3

100 101 102

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:22

200 201 202
300 301 302

info:cursos:netacad:python:pe2m3:herencia https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:herencia?rev=1657048946

Todos los comentarios que hemos hecho hasta ahora estan relacionados con casos de herencia unica,
cuando una subclase tiene exactamente una superclase. Esta es la situacién mas comun (y también la
recomendada).

Python, sin embargo, ofrece mucho mas aqui. En las préximas lecciones te mostraremos algunos ejemplos de
herencia miltiple.

La herencia miultiple ocurre cuando una clase tiene mas de una superclase.

Sintacticamente, dicha herencia se presenta como una lista de superclases separadas por comas entre
paréntesis después del nombre de la nueva clase, al igual que aqui:

SuperA:
var a
fun a(self

SuperB:
var b
fun b(self

Sub (SuperA, SuperB

obj Sub

obj.var a, obj.fun a
obj.var b, obj.fun b

La clase Sub tiene dos superclases: SuperA y SuperB. Esto significa que la clase Sub hereda todos los bienes
ofrecidos por ambas clases SuperA 'y SuperB.

El cédigo imprime:

10 11
20 21

Ahora es el momento de introducir un nuevo término - overriding (anulacion).

¢Qué crees que sucedera si mas de una de las superclases define una entidad con un nombre en particular?

Levell:
var
fun(self

Level2(Levell
var

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 18:00

14/02/2026 18:00 11/21 Mddulo 3: Programacion Orientada a Objetos - Herencia

fun(self

Level3(Level2

obj Level3
obj.var, obj.fun

Tanto la clase, Levell y Level2 definen un método llamado fun() y una propiedad llamada var. ;Significara
esto el objeto de la claseLevel3 podra acceder a dos copias de cada entidad? De ningln modo.

La entidad definida después (en el sentido de herencia) anula la misma entidad definida
anteriormente. Es por eso que el cédigo produce el siguiente resultado:

200 201

Como puedes ver, la variable de clase var y el método fun() de la clase Level2 anula las entidades de los
mismos nombres derivados de la clase Levell.

Esta caracteristica se puede usar intencionalmente para modificar el comportamiento predeterminado de las
clases (o definido previamente) cuando cualquiera de tus clases necesite actuar de manera diferente a su
ancestro.

;Qué ocurre cuando una clase tiene dos ancestros que ofrecen la misma entidad y se encuentran en el mismo
nivel? En otras palabras, ;Qué se debe esperar cuando surge una clase usando herencia multiple? Miremos lo
siguiente.

Left:
var L
var_left “LL"
fun(self
"Left"
Right:
var “R"
var_ right "RR"
fun(self
"Right"

Sub(Left, Right

obj Sub
obj.var, obj.var left, obj.var right, obj.fun

La clase Sub hereda todos los bienes de dos superclases Left y Right (estos nombres estan destinados a ser
significativos).

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:22

info:cursos:netacad:python:pe2m3:herencia https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:herencia?rev=1657048946

No hay duda de que la variable de clase var_right proviene de la clase Right, y var_left proviene de la clase Left
respectivamente.

Esto es claro. Pero, ;De donde proviene la variable var? ;Es posible adivinarlo? El mismo problema se encuentra
con el método fun() - ;Serd invocada desde Left o desde Right? Ejecutemos el programa: la salida sera:

L LL RR Left

Esto prueba que ambos casos poco claros tienen una solucién dentro de la clase Left. jEs esta una premisa
suficiente para formular una regla general? Si lo es.

Podemos decir que Python busca componentes de objetos en el siguiente orden:

¢ Dentro del objeto mismo.
¢ En sus superclases, de abajo hacia arriba.
¢ Si hay mas de una clase en una ruta de herencia, Python las escanea de izquierda a derecha.

iNecesitas algo mas? Simplemente haz una pequefia enmienda en el codigo, reemplaza:class Sub(Left, Right):
con: class Sub(Right, Left):, luego ejecuta el programa nuevamente y observa qué sucede.

;Qué ves ahora? Vemos:

R LL RR Right
Como construir una jerarquia de clases

Construir una jerarquia de clases no es solo por amor al arte.

Si divides un problema entre las clases y decides cual de ellas debe ubicarse en la parte superior y cual debe
ubicarse en la parte inferior de la jerarquia, debes analizar cuidadosamente el problema, pero antes de
mostrarte como hacerlo (y como no hacerlo), queremos resaltar un efecto interesante. No es nada
extraordinario (es solo una consecuencia de las reglas generales presentadas anteriormente), pero recordarlo
puede ser clave para comprender como funcionan algunos cédigos y cdmo se puede usar este efecto para
construir un conjunto flexible de clases.

One:
do it(self
"do it de One"

doanything(self
self.do it

Two (One
do it(self
“do it de Two"

one One
two Two

one.doanything
two.doanything

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 18:00

14/02/2026 18:00 13/21 Mddulo 3: Programacion Orientada a Objetos - Herencia

Analicémoslo:

¢ Existen dos clases llamadas One y Two, se entiende que Two es derivada de One. Nada especial. Sin
embargo, algo es notable: el método do it().

e El método do it () estd definido dos veces: originalmente dentro de One posteriormente dentro de
Two. La esencia del ejemplo radica en el hecho de que es invocado solo una vez dentro de One.

La pregunta es: jcudl de los dos métodos sera invocado por las dos Ultimas lineas del cédigo?

La primera invocacién parece ser simple, el invocar el método doanything() del objeto llamado one
obviamente activara el primero de los métodos.

La segunda invocacién necesita algo de atencién. También es simple si tienes en cuenta cémo Python
encuentra los componentes de la clase. La segunda invocacién ejecutard el método do it () en la forma
existente dentro de la clase Two, independientemente del hecho de que la invocacién se lleva a cabo dentro de
la clase One.

En efecto, el cédigo genera el siguiente resultado:

do it from One
do it from Two

Nota: la situacién en la cual la subclase puede modificar el comportamiento de su superclase (como en
el ejemplo) se llama poliformismo. La palabra proviene del griego (polys: «muchos, mucho» y morphe,
«forma, forma»), lo que significa que una misma clase puede tomar varias formas dependiendo de las
redefiniciones realizadas por cualquiera de sus subclases.

El método, redefinido en cualquiera de las superclases, que cambia el comportamiento de la superclase, se
llama virtual.

En otras palabras, ninguna clase se da por hecho. El comportamiento de cada clase puede ser modificado en
cualquier momento por cualquiera de sus subclases.

Te mostraremos como usar el poliformismo para extender la flexibilidad de la clase.
time

TrackedVehicle:
control track(left, stop

turn(left

control track(left, True
time.sleep

control track(left, False

WheeledVehicle:
turn_front wheels(left, on

turn(left

turn_front wheels(left, True
time.sleep

turn_front wheels(left, False

iSe parece a algo? Si, por supuesto que lo hace. Se refiere al ejemplo que se muestra al comienzo del médulo

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:22

info:cursos:netacad:python:pe2m3:herencia https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:herencia?rev=1657048946

cuando hablamos de los conceptos generales de la programacion orientada a objetos.

Puede parecer extrafio, pero no utilizamos herencia en este ejemplo, solo queriamos mostrarte que no nos
limita.

Definimos dos clases separadas capaces de producir dos tipos diferentes de vehiculos terrestres. La principal
diferencia entre ellos esta en cdmo giran. Un vehiculo con ruedas solo gira las ruedas delanteras
(generalmente). Un vehiculo oruga tiene que detener una de las pistas.

¢Puedes seguir el cédigo?

¢ Un vehiculo oruga realiza un giro deteniéndose y moviéndose en una de sus pistas (esto lo hace el
método control_track() el cual se implementard mas tarde).

¢ Un vehiculo con ruedas gira cuando sus ruedas delanteras giran (esto lo hace el método
turn_front_wheels()).

e El método turn() utiliza el método adecuado para cada vehiculo en particular.

iPuedes detectar el error del cédigo?
Los métodos turn() son muy similares como para dejarlos en esta forma.

Vamos a reconstruir el c6digo: vamos a presentar una superclase para reunir todos los aspectos similares de los
vehiculos, trasladando todos los detalles a las subclases.

time

Vehicle:
change direction(left, on

turn(left

change direction(left, True
time.sleep

change direction(left, False

TrackedVehicle(Vehicle
control track(left, stop

change direction(left, on
control track(left, on

WheeledVehicle(Vehicle
turn_front wheels(left, on

change direction(left, on
turn_front wheels(left, on

Esto es lo que hemos hecho:

¢ Definimos una superclase llamada Vehicle, la cual utiliza el método turn() para implementar un
esquema para poder girar, mientras que el giro en si es realizado por change _direction(); nota:
dicho método estd vacio, ya que vamos a poner todos los detalles en la subclase (dicho método a

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 18:00

14/02/2026 18:00 15/21 Mddulo 3: Programacion Orientada a Objetos - Herencia

menudo se denomina método abstracto, ya que solo demuestra alguna posibilidad que sera
instanciada mas tarde).

¢ Definimos una subclase llamada TrackedVehicle (nota: es derivada de la clase Vehicle) la cual instancia el
método change direction() utilizando el método denominado control track().

* Respectivamente, la subclase llamada WheeledVehicle hace lo mismo, pero usa el método
turn_front wheels() para obligar al vehiculo a girar.

La ventaja mas importante (omitiendo los problemas de legibilidad) es que esta forma de cédigo te permite
implementar un nuevo algoritmo de giro simplemente modificando el método turn(), lo cual se puede hacer en
un solo lugar, ya que todos los vehiculos lo obedeceran.

As{ es como el el poliformismo ayuda al desarrollador a mantener el cddigo limpio y consistente.

La herencia no es la Unica forma de construir clases adaptables. Puedes lograr los mismos objetivos (no
siempre, pero muy a menudo) utilizando una técnica llamada composicién.

La composicidn es el proceso de componer un objeto usando otros objetos diferentes. Los objetos
utilizados en la composicién entregan un conjunto de rasgos deseados (propiedades y/o métodos), podemos
decir que actlian como bloques utilizados para construir una estructura mas complicada.

Puede decirse que:

¢ La herencia extiende las capacidades de una clase agregando nuevos componentes y modificando
los existentes; en otras palabras, la receta completa esta contenida dentro de la clase misma y todos sus
ancestros; el objeto toma todas las pertenencias de la clase y las usa.

¢ La composicion proyecta una clase como contenedor capaz de almacenar y usar otros objetos
(derivados de otras clases) donde cada uno de los objetos implementa una parte del comportamiento de
una clase.

Permitenos ilustrar la diferencia usando los vehiculos previamente definidos. El enfoque anterior nos condujo a
una jerarquia de clases en la que la clase mas alta conocia las reglas generales utilizadas para girar el vehiculo,
pero no sabfa cémo controlar los componentes apropiados (ruedas o pistas).

Las subclases implementaron esta capacidad mediante la introduccién de mecanismos especializados.
Hagamos (casi) lo mismo, pero usando composicion. La clase, como en el ejemplo anterior, sabe cémo girar el
vehiculo, pero el giro real lo realiza un objeto especializado almacenado en una propiedad llamada controlador.
El controlador es capaz de controlar el vehiculo manipulando las partes relevantes del vehiculo.

time
Tracks:
change direction(self, left, on
"pistas: ", left, on
Wheels:
change direction(self, left, on
"ruedas: ", left, on
Vehicle:

~init (self, controller
self.controller controller

turn(self, left
self.controller.change direction(left, True
time.sleep

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:22

info:cursos:netacad:python:pe2m3:herencia https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:herencia?rev=1657048946

self.controller.change direction(left, False

wheeled Vehicle(Wheels
tracked Vehicle(Tracks

wheeled.turn(True
tracked.turn(False

Existen dos clases llamadas Tracks y Wheels, ellas saben como controlar la direccién del vehiculo. También hay
una clase llamada Vehicle que puede usar cualquiera de los controladores disponibles (los dos ya definidos o
cualquier otro definido en el futuro): el controlador se pasa a la clase durante la inicializacion.

De esta manera, la capacidad de giro del vehiculo se compone de un objeto externo, no implementado dentro
de la clase Vehicle.

En otras palabras, tenemos un vehiculo universal y podemos instalar pistas o ruedas en él.

El codigo produce el siguiente resultado:

ruedas: True True

pistas: True False
tracks: False True
tracks: False False

Herencia simple frente a herencia miltiple

Como ya sabes, no hay obstaculos para usar la herencia multiple en Python. Puedes derivar cualquier clase
nueva de mas de una clase definida previamente.

Solo hay un «pero». El hecho de que puedas hacerlo no significa que tengas que hacerlo.
No olvides que:

¢ Una sola clase de herencia siempre es mas simple, segura y facil de entender y mantener.

¢ La herencia multiple siempre es arriesgada, ya que tienes muchas mas oportunidades de cometer un
error al identificar estas partes de las superclases que influiran efectivamente en la nueva clase.

¢ La herencia multiple puede hacer que la anulacién sea extremadamente dificil; ademas, el emplear la
funcién super() se vuelve ambiguo.

¢ La herencia multiple viola el principio de responsabilidad tnica (mas detalles aqui:
https://en.wikipedia.org/wiki/Single_responsibility principle) ya que forma una nueva clase de dos (0 mas)
clases que no saben nada una de la otra.

e Sugerimos encarecidamente la herencia multiple como la Gltima de todas las posibles soluciones: si
realmente necesitas las diferentes funcionalidades que ofrecen las diferentes clases, la composicién
puede ser una mejor alternativa.

¢Qué es el Orden de Resolucion de Métodos (MRO) y por qué no todas las herencias
tienen sentido?

MRO, en general, es una forma (puedes llamarlo una estrategia) en la que un lenguaje de programacién en
particular escanea la parte superior de la jerarquia de una clase para encontrar el método que necesita
actualmente. Vale la pena enfatizar que los diferentes lenguajes usan MROs levemente (o incluso
completamente) diferentes. Python es Unico en este aspecto y sus costumbres son un poco especificas.

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 18:00

https://en.wikipedia.org/wiki/Single_responsibility_principle

14/02/2026 18:00 17/21 Mddulo 3: Programacion Orientada a Objetos - Herencia

Te mostraremos coémo funciona el MRO de Python en dos casos peculiares que son ejemplos claros de
problemas que pueden ocurrir cuando intentas usar la herencia mdltiple de manera demasiado imprudente.

Comencemos con un fragmento que inicialmente puede parecer simple.

Top:
m_top(self
Iltopll

Middle(Top
m middle(self
“middle"

Bottom(Middle
m bottom(self
"bottom"

object = Bottom
object.m bottom
object.m middle
object.m top

Estamos seguros de que si analizas el fragmento tu mismo, no veras ninguna anomalia en él. Si, tienes toda la
razén: parece claro y simple, y no genera preocupaciones. Si ejecutas el céddigo, producira el siguiente resultado

predecible:

bottom
middle
top

Sin sorpresas hasta ahora. Hagamos un pequefio cambio en este cddigo. Echa un vistazo:

Top:
m top(self
Iltopll

Middle(Top
m_middle(self
"middle"

Bottom(Middle, Top
m bottom(self
"bottom"

object = Bottom
object.m bottom
object.m middle
object.m top

;Puedes ver la diferencia? Estd escondida en esta linea:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:22

info:cursos:netacad:python:pe2m3:herencia https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:herencia?rev=1657048946

Bottom(Middle, Top

De esta manera exdtica, hemos convertido un cédigo muy simple con una clara ruta de herencia Unica en un
misterioso acertijo de herencia mdltiple. «;Es valido?» Te puedes preguntar. Si lo es. «;Cémo es eso posible?»
te preguntas, esperamos que realmente sientas la necesidad de hacer esta pregunta.

Como puedes ver, el orden en el que se enumeran las dos superclases entre paréntesis cumple con la
estructura del cédigo: la clase Middle precede a la clase Top, justo como en la ruta de herencia real.

A pesar de su rareza, la muestra es correcta y funciona como se esperaba, pero debe indicarse que esta
notacién no aporta ninguna funcionalidad nueva ni significado adicional.

Modifiqguemos el cédigo una vez mas; ahora intercambiaremos ambos nombres de superclase en la definicién de
clase Bottom. Asi es como se ve el fragmento de cédigo ahora:

Top:
m_top(self
n top n

Middle(Top
m_middle(self
"middle"

Bottom(Top, Middle
m bottom(self
"bottom"

object = Bottom
object.m bottom
object.m middle
object.m top

Para anticiparnos a tu pregunta, diremos que esta enmienda ha estropeado el cédigo y ya no se ejecutara. Qué
pena. El orden que intentamos forzar (Top, Middle) es incompatible con la ruta de herencia que se deriva de la
estructura del cédigo. A Python no le gustard. Esto es lo que veremos:

TypeError: Cannot create a consistent method resolution order (MRO) for bases Top,
Middle

Creemos que el mensaje habla por si solo. El MRO de Python no se puede doblar ni violar, no solo porque esa es
la forma en que funciona Python, sino también porque es una regla que debes obedecer.

El Problema del Diamante

El segundo ejemplo del espectro de problemas que posiblemente pueden surgir de la herencia multiple esta
ilustrado por un problema clasico llamado problema del diamante. El nombre refleja la forma del diagrama de
herencia; observa la imagen:

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 18:00

14/02/2026 18:00 19/21 Mddulo 3: Programacion Orientada a Objetos - Herencia

¢ Existe la superclase superior llamada A.

¢ Existen dos subclases derivadas de A: By C.

e También estd la subclase inferior llamada D, derivada de By C (o C y B, ya que estas dos variantes
significan cosas diferentes en Python).

;Puedes ver el diamante ahi?

A:

B(A

C(A

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
05/07/2022
12:22

info:cursos:netacad:python:pe2m3:herencia https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:herencia?rev=1657048946

La misma estructura, pero expresada en Python.

Algunos lenguajes de programacioén no permiten la herencia mdltiple en absoluto y, como consecuencia, no te
permitirdn construir un diamante; este es el camino que Java y C# han elegido seguir desde sus origenes.

Python, sin embargo, ha elegido una ruta diferente: permite la herencia multiple y no le importa si escribe y
ejecuta cddigo como el del editor. Pero no te olvides del MRO: siempre esta a cargo.

Reconstruyamos nuestro ejemplo de la pagina anterior para hacerlo mas parecido a un diamante, como se
muestra a continuacién:

Top:
m_top (self
n top n

Middle Left(Top
m middle(self
"middle left"

Middle Right(Top
m_middle(self
"middle right"

Bottom(Middle Left, Middle Right
m bottom(self
"bottom"

object = Bottom
object.m bottom
object.m middle
object.m top

Nota: ambas clases Middle definen un método con el mismo nombre: m middle().

Introduce una pequefia incertidumbre en nuestra muestra, aunque estamos absolutamente seguros de que
puedes responder la siguiente pregunta clave: jcual de los dos métodos m_middle() se invocara realmente
cuando la siguiente linea se ejecute?

Object.m middle

En otras palabras, qué verds en la pantalla: middle left o middle right?

No es necesario que te apresures, jpiénselo dos veces y toma en cuenta el MRO de Python!

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 18:00

14/02/2026 18:00 21/21 Mddulo 3: Programacion Orientada a Objetos - Herencia

(Estds listo?

Si, tienes razén. La invocacion activara el método m _middle(), que proviene de la clase Middle_Left. La
explicacién es simple: la clase aparece antes de Middle Right en la lista de herencia de la clase Bottom. Si
deseas asegurarte de que no haya dudas al respecto, intenta intercambiar estas dos clases en la lista y verifica
los resultados.

Si deseas experimentar algunas impresiones mas profundas sobre la herencia mdltiple y las piedras preciosas,
intenta modificar nuestro fragmento y equipar la clase Upper con otro espécimen del métodom middle () e
investigua su comportamiento detenidamente.

Como puedes ver, los diamantes pueden traer algunos problemas a tu vida, tanto los reales como los que ofrece
Python.

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:herencia?rev=1657048946 ‘X

Last update: 05/07/2022 12:22

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:herencia?rev=1657048946

	Módulo 3: Programación Orientada a Objetos - Herencia
	Herencia: ¿por qué y cómo?
	Herencia: issubclass()
	Herencia: isinstance()
	Herencia: el operador is
	Cómo Python encuentra propiedades y métodos
	Cómo construir una jerarquía de clases
	Herencia simple frente a herencia múltiple
	¿Qué es el Orden de Resolución de Métodos (MRO) y por qué no todas las herencias tienen sentido?
	El Problema del Diamante

