21/12/2025 15:56 1/8 Mddulo 3: Programacion Orientada a Objetos - propiedades

Mddulo 3: Programacion Orientada a Objetos -
propiedades

Variables de instancia

En general, una clase puede equiparse con dos tipos diferentes de datos para formar las propiedades de una
clase. Ya viste uno de ellos cuando estabamos estudiando pilas.

Este tipo de propiedad existe solo cuando se crea explicitamente y se agrega a un objeto. Como ya sabes, esto
se puede hacer durante la inicializacién del objeto, realizada por el constructor.

Ademas, se puede hacer en cualquier momento de la vida del objeto. Es importante mencionar también que
cualquier propiedad existente se puede eliminar en cualquier momento.

Tal enfoque tiene algunas consecuencias importantes:

¢ Diferentes objetos de la misma clase pueden poseer diferentes conjuntos de propiedades.

e Debe haber una manera de verificar con seguridad si un objeto especifico posee la propiedad
gue deseas utilizar (a menos que quieras generar una excepcién, siempre vale la pena considerarlo).

e Cada objeto lleva su propio conjunto de propiedades, no interfieren entre si de ninguna manera.

Tales variables (propiedades) se llaman variables de instancia.

La palabra instancia sugiere que estan estrechamente conectadas a los objetos (que son instancias de clase),
no a las clases mismas. Echemos un vistazo mas de cerca.

Aqui hay un ejemplo:
ExampleClass:

~_init (self, val
self.first val

set second(self, val
self.second = val

example object 1 = ExampleClass
example object 2 = ExampleClass

example object 2.set second

example object 3 = ExampleClass
example object 3.third

example object 1. dict
example object 2. dict
example object 3. dict

Se necesita una explicacién adicional antes de entrar en mas detalles. Echa un vistazo a las Ultimas tres lineas
del cédigo.

Los objetos de Python, cuando se crean, estan dotados de un pequefo conjunto de propiedades y
métodos predefinidos. Cada objeto los tiene, los quieras o no. Uno de ellos es una variable llamada _ dict__

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last
update:
05/07/2022
12:13

info:cursos:netacad:python:pe2m3:propiedades https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:propiedades

(es un diccionario).

La variable contiene los nombres y valores de todas las propiedades (variables) que el objeto contiene
actualmente. Vamos a usarla para presentar de forma segura el contenido de un objeto.

Vamos a sumergirnos en el cédigo ahora:

¢ La clase llamada ExampleClass tiene un constructor, el cual crea incondicionalmente una variable de
instancia llamada first, y le asigna el valor pasado a través del primer argumento (desde la perspectiva
del usuario de la clase) o el segundo argumento (desde la perspectiva del constructor); ten en cuenta el
valor predeterminado del pardmetro: cualquier cosa que puedas hacer con un parametro de funcién
regular también se puede aplicar a los métodos.
¢ La clase también tiene un método que crea otra variable de instancia, llamada second.
¢ Hemos creado tres objetos de la clase ExampleClass, pero todas estas instancias difieren:
o example_object 1 solo tiene una propiedad llamada first.
o example_object_2 tiene dos propiedades: first y second.
o example_object 3 ha sido enriquecido sobre la marcha con una propiedad llamada third uera del
cédigo de la clase: esto es posible y totalmente permisible.

La salida del programa muestra claramente que nuestras suposiciones son correctas: aqui estan:

{'first': 1}
{'second': 3, 'first': 2}
{'third': 5, 'first': 4}

Hay una conclusién adicional que deberia mencionarse aqui: el modificar una variable de instancia de
cualquier objeto no tiene impacto en todos los objetos restantes. Las variables de instancia estan
perfectamente aisladas unas de otras.

ExampleClass:
__init (self, val
self. first = val

set second(self, val
self. second = val

example object 1 = ExampleClass
example object 2 = ExampleClass

example object 2.set second

example object 3 ExampleClass
example object 3. third

example object 1. dict
example object 2. dict
example object 3. dict

Es casi lo mismo que el anterior. La Unica diferencia esta en los nombres de las propiedades. Hemos
antepuesto dos guiones bajos (_ ).

Como sabes, tal adicién hace que la variable de instancia sea privada, se vuelve inaccesible desde el mundo
exterior.

https://miguelangel.torresegea.es/wiki/ Printed on 21/12/2025 15:56



21/12/2025 15:56 3/8 Mddulo 3: Programacion Orientada a Objetos - propiedades

El comportamiento real de estos nombres es un poco mas complicado, asi que ejecutemos el programa. Esta es
la salida:

{' ExampleClass first': 1}
{' ExampleClass first': 2, ' ExampleClass second': 3}
{' ExampleClass first': 4, ' third': 5}

(Puedes ver estos nombres extrafos llenos de guiones bajos? ;De dénde provienen?

Cuando Python ve que deseas agregar una variable de instancia a un objeto y lo vas a hacer dentro de
cualquiera de los métodos del objeto, maneja la operacién de la siguiente manera:

e Coloca un nombre de clase antes de tu nombre.
¢ Coloca un guién bajo adicional al principio.

Es por ello que _first se convierte en _ExampleClass__first.

El nombre ahora es completamente accesible desde fuera de la clase. Puedes ejecutar un cédigo como
este:

print(example_object 1. ExampleClass__first)
Obtendras un resultado valido sin errores ni excepciones.
Como puedes ver, hacer que una propiedad sea privada es limitado.

No funcionara si agregas una variable de instancia fuera del cédigo de la clase. En este caso, se comportara
como cualquier otra propiedad ordinaria.

Variables de clase

Una variable de clase es una propiedad que existe en una sola copia y se almacena fuera de cualquier
objeto.

Nota: no existe una variable de instancia si no hay ningulin objeto de la clase; solo existe una variable de clase
en una copia, incluso si no hay objetos en la clase.

Las variables de clase se crean de manera diferente. El ejemplo te dird mas:

ExampleClass:
counter
~_init (self, val
self. first = val
ExampleClass.counter +

example object 1 = ExampleClass
example object 2 = ExampleClass
example object 3 ExampleClass

example object 1. dict , example object 1.counter

example object 2. dict , example object 2.counter

example object 3. dict , example object 3.counter
Observa:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last
update:
05/07/2022
12:13

info:cursos:netacad:python:pe2m3:propiedades https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:propiedades

e Hay una asignacién en la primera linea de la definicién de clase: establece la variable denominada
counter a 0; inicializando la variable dentro de la clase pero fuera de cualquiera de sus métodos hace que
la variable sea una variable de clase.

» El acceder a dicha variable tiene el mismo aspecto que acceder a cualquier atributo de instancia; esta en
el cuerpo del constructor; como puedes ver, el constructor incrementa la variable en uno; en efecto, la
variable cuenta todos los objetos creados.

Ejecutar el cédigo provocara el siguiente resultado:

{' ExampleClass first': 1} 3
{' ExampleClass first': 2} 3
{' ExampleClass first': 4} 3

Dos conclusiones importantes se pueden sacar del ejemplo:

¢ Las variables de clase no se muestran en el diccionario de un objeto dict (esto es natural ya que
las variables de clase no son partes de un objeto), pero siempre puedes intentar buscar en la variable del
mismo nombre, pero a nivel de clase, te mostraremos esto muy pronto.

¢ Una variable de clase siempre presenta el mismo valor en todas las instancias de clase (objetos).

El cambiar el nombre de una variable de clase tiene los mismos efectos que aquellos con los que ya estd
familiarizado.

Mira el ejemplo en el editor. jPuedes adivinar su salida?

ExampleClass:
__counter
~_init (self, val
self. first = val
ExampleClass. counter +

example object 1 ExampleClass
example object 2 = ExampleClass
example object 3 = ExampleClass

example object 1. dict , example object 1. ExampleClass counter
example object 2. dict , example object 2. ExampleClass counter
example object 3. dict , example object 3. ExampleClass counter

Hemos dicho antes que las variables de clase existen incluso cuando no se cred ninguna instancia de clase
(objeto).

Ahora aprovecharemos la oportunidad para mostrarte la diferencia entre estas dos variables dict_, la de
la clase y la del objeto.

ExampleClass:
varia
~_init (self, val
ExampleClass.varia val

ExampleClass. dict
example object ExampleClass

https://miguelangel.torresegea.es/wiki/ Printed on 21/12/2025 15:56



21/12/2025 15:56 5/8 Mddulo 3: Programacion Orientada a Objetos - propiedades

ExampleClass. dict
example object. dict

Echemos un vistazo mas de cerca:

Definimos una clase llamada ExampleClass.
La clase define una variable de clase llamada varia.
El constructor de la clase establece la variable con el valor del pardmetro.
Nombrar la variable es el aspecto mas importante del ejemplo porque:
o El cambiar la asignacion a self.varia = val crearia una variable de instancia con el mismo nombre
que la de la clase.
o El cambiar la asignacién a varia = val operaria en la variable local de un método; (te
recomendamos probar los dos casos anteriores; esto te facilitard recordar la diferencia).
5. La primera linea del cddigo fuera de la clase imprime el valor del atributo ExampleClass.varia . Nota:
utilizamos el valor antes de instanciar el primer objeto de la clase.

PN

Ejecuta el cddigo en el editor y verifica su salida.

{' module ': ' main_ ', ‘'varia': 1, ' init ': <function ExampleClass. init
at 0x7fc83922b0eO>, ' dict ': <attribute ' dict ' of 'ExampleClass' objects>,

' weakref ': <attribute ' weakref ' of 'ExampleClass' objects>, ' doc ':
None}

{' module ': ' main_ ', 'varia': 2, ' init ': <function ExampleClass. init
at 0x7fc83922b0eO>, ' dict ': <attribute ' dict ' of 'ExampleClass' objects>,

' weakref ': <attribute ' weakref ' of 'ExampleClass' objects>, ' doc ':
None}

Como puedes ver _dict__ contiene muchos mas datos que la contraparte de su objeto. La mayoria de ellos son
inGtiles ahora, el que queremos que verifiques cuidadosamente muestra el valor actual de varia.

Nota que el __dict__del objeto esta vacio, el objeto no tiene variables de instancia.

Comprobando la existencia de un atributo

La actitud de Python hacia la instanciacién de objetos plantea una cuestién importante: en contraste con otros
lenguajes de programacién, es posible que no esperes que todos los objetos de la misma clase tengan
los mismos conjuntos de propiedades.

ExampleClass:
~_init (self, val
val %
self.a

self.b

example object = ExampleClass

example object.a
example object.b

El objeto creado por el constructor solo puede tener uno de los dos atributos posibles: a o b.

La ejecucién del cédigo producird el siguiente resultado:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last
update:
05/07/2022
12:13

info:cursos:netacad:python:pe2m3:propiedades https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:propiedades

1

Traceback (most recent call last):

File ".main.py", line 11, in
print(example object.b)

AttributeError: 'ExampleClass' object has no attribute 'b'

Como puedes ver, acceder a un atributo de objeto (clase) no existente genera una excepcién AttributeError.

La instruccidn try-except te brinda la oportunidad de evitar problemas con propiedades inexistentes.

ExampleClass:
__init (self, val
val %
self.a

self.b

example object = ExampleClass
example object.a

example object.b
AttributeError:

Como puedes ver, esta accién no es muy sofisticada. Esencialmente, acabamos de barrer el tema debajo de la

alfombra.

Afortunadamente, hay una forma mas de hacer frente al problema.

Python proporciona una funcién que puede verificar con seguridad si algtin objeto / clase contiene una
propiedad especifica. La funcion se llama hasattr, y espera que le pasen dos argumentos:

¢ La clase o el objeto que se verifica.

¢ El nombre de la propiedad cuya existencia se debe informar (Nota: debe ser una cadena que contenga el

nombre del atributo).
La funcidn retorna True o False.

Asi es como puedes utilizarla:

ExampleClass:
__init (self, val
val %
self.a

self.b
example object = ExampleClass
example object.a

hasattr(example object, 'b'

https://miguelangel.torresegea.es/wiki/

Printed on 21/12/2025 15:56



21/12/2025 15:56 7/8 Mddulo 3: Programacion Orientada a Objetos - propiedades

example object.b

No olvides que la funcién hasattr() también puede operar en clases. Puedes usarla para averiguar si una
variable de clase esta disponible, como en el ejemplo en el editor.

La funcién devuelve True si la clase especificada contiene un atributo dado, y False de lo contrario.

ExampleClass:
attr

hasattr(ExampleClass, 'attr'
hasattr(ExampleClass, 'prop'

Un ejemplo mas: analiza el cddigo a continuacién e intenta predecir su salida:
ExampleClass:

__init (self
self.b

example object = ExampleClass

hasattr(example object, 'b'
hasattr(example object, 'a’
hasattr(ExampleClass, 'b'
hasattr(ExampleClass, 'a'

Bien, hemos llegado al final de esta seccién. En la siguiente seccién vamos a hablar sobre los métodos, ya que
los métodos dirigen los objetos y los activan.

Puntos Clave

1. Una variable de instancia es una propiedad cuya existencia depende de la creacién de un objeto. Cada objeto
puede tener un conjunto diferente de variables de instancia.

Ademas, se pueden agregar y quitar libremente de los objetos durante su vida Util. Todas las variables de
instancia de objeto se almacenan dentro de un diccionario dedicado llamado __dict_, contenido en cada objeto
por separado.

2. Una variable de instancia puede ser privada cuando su nombre comienza con __, pero no olvides que dicha
propiedad aun es accesible desde fuera de la clase usando un nombre modificado construido como <
codel>_ClassName__PrivatePropertyName.

3. Una variable de clase es una propiedad que existe exactamente en una copia y no necesita ningun objeto
creado para ser accesible. Estas variables no se muestran como contenido de __dict__.

Todas las variables de clase de una clase se almacenan dentro de un diccionario dedicado llamado __dict__,
contenido en cada clase por separado.

4. Una funcién llamada hasattr() se puede utilizar para determinar si algin objeto o clase contiene cierta
propiedad especificada.

Por ejemplo:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last

327;;/62:022 info:cursos:netacad:python:pe2m3:propiedades https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:propiedades
12:13
Sample:
gamma # Class variable.
__init (self
self.alpha # Variable de instancia.
self. delta # Variable de instancia privada.
obj Sample
obj.beta # Otra variable de instancia (que existe solo dentro de la instancia
“obj").
obj. dict

El cédigo da como salida:
{'alpha': 1, ' Sample delta': 3, 'beta': 2}

https://edube.org/learn/python-essentials-2-esp/poo-m-eacute-todos-10

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:propiedades

Last update: 05/07/2022 12:13

https://miguelangel.torresegea.es/wiki/ Printed on 21/12/2025 15:56


https://edube.org/learn/python-essentials-2-esp/poo-m-eacute-todos-10
https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m3:propiedades

	Módulo 3: Programación Orientada a Objetos - propiedades
	Variables de instancia
	Variables de clase
	Comprobando la existencia de un atributo
	Puntos Clave


