14/02/2026 22:47 1/14 Mddulo 4 (Intermedio): Archivos

Mddulo 4 (Intermedio): Archivos

Accediendo archivos desde codigo en Python

Uno de los problemas mas comunes en el trabajo del desarrollador es procesar datos almacenados en
archivos que generalmente se almacenan fisicamente utilizando dispositivos de almacenamiento: discos duros,
Opticos, de red o de estado sélido.

Es facil imaginar un programa que clasifique 20 nimeros, y es igualmente facil imaginar que el usuario de este
programa ingrese estos veinte nimeros directamente desde el teclado.

Es mucho mas dificil imaginar la misma tarea cuando hay 20,000 nimeros para ordenar, y no existe un solo
usuario que pueda ingresar estos nimeros sin cometer un error.

Es mucho mas facil imaginar que estos nimeros se almacenan en el archivo que lee el programa. El programa
clasifica los nimeros y no los envia a la pantalla, sino que crea un nuevo archivo y guarda la secuencia
ordenada de nimeros alli.

Si queremos implementar una base de datos simple, la UGnica forma de almacenar la informacién entre
ejecuciones del programa es guardarla en un archivo (o archivos si tu base de datos es mas compleja).

Es un principio que cualquier problema de programacién no simple se basa en el uso de archivos, ya sea que
procese imagenes (almacenadas en archivos), multipligue matrices (almacenadas en archivos) o calcule
salarios e impuestos (lectura de datos almacenados en archivos).

Puedes preguntarte por que hemos esperado hasta ahora para mostrarte esto.

La respuesta es muy simple: la forma en que Python accede y procesa los archivos se implementa utilizando un
conjunto consistente de objetos. No hay mejor momento para hablar de esto.

Nombres de archivos

Los diferentes sistemas operativos pueden tratar a los archivos de diferentes maneras. Por ejemplo, Windows
usa una convencion de nomenclatura diferente a la adoptada en los sistemas Unix/Linux.

Si utilizamos la nocién de un nombre de archivo candnico (un nombre que define de forma exclusiva la
ubicacién del archivo, independientemente de su nivel en el arbol de directorios), podemos darnos cuenta de
gue estos nombres se ven diferentes en Windows y en Unix/Linux:

Windows

C:\directorio\archivos

Linux

/directorio/archivos

Como puedes ver, los sistemas derivados de Unix/Linux no usan la letra de la unidad de disco (por ejemplo, C:)

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
07/07/2022
07:43

info:cursos:netacad:python:pe2m4:archivos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:archivos?rev=1657205013

y todos los directorios crecen desde un directorio raiz llamado /, mientras que los sistemas Windows reconocen
el directorio raiz como |.

Ademads, los nombres de archivo de sistemas Unix/Linux distinguen entre mayusculas y minUsculas. Los
sistemas Windows almacenan mayusculas y minudsculas en el nombre del archivo, pero no distinguen entre
ellas.

Esto significa que estas dos cadenas: EsteEsEINombreDelArchivo y esteeselnombredelarchivo describen dos
archivos diferentes en sistemas Unix/Linux, pero tienen el mismo nombre para un solo archivo en sistemas
Windows.

La diferencia principal y mas llamativa es que debes usar dos separadores diferentes para los nombres de
directorio: \ en Windows y / en Unix/Linux.

Esta diferencia no es muy importante para el usuario normal, pero es muy importante al escribir programas
en Python.

Para entender por qué, intenta recordar el papel muy especifico que desempefia \ dentro de las cadenas en
Python.

Supongamos que estds interesado en un archivo en particular ubicado en el directorio dir, y con el nombre de
file.

Supongamos también que deseas asignar a una cadena el nombre del archivo.

En sistemas Unix/Linux, seria de la siguiente manera:
name "/dir/file"
Pero si intentas codificarlo para el sistema Windows:
name "\dir\file"

Obtendras una sorpresa desagradable: Python generard un error o la ejecucién del programa se comportara de
manera extrafia, como si el nombre del archivo se hubiera distorsionado de alguna manera.

De hecho, no es extrafio en lo absoluto, pero es bastante obvio y natural. Python usa la \ como un caracter de
escape (como \n).

Esto significa que los nombres de archivo de Windows deben escribirse de la siguiente manera:
name "\\dir\\file"

Afortunadamente, también hay una solucién més. Python es lo suficientemente inteligente como para poder
convertir diagonales en diagonales invertidas cada vez que descubre que el sistema operativo lo requiere.

Esto significa que cualquiera de las siguientes asignaciones:

name "/dir/file"
name "c:/dir/file"

Funcionara también con Windows.

Cualquier programa escrito en Python (y no solo en Python, porque esa convencién se aplica a practicamente
todos los lenguajes de programacién) no se comunica con los archivos directamente, sino a través de algunas
entidades abstractas que se nombran de manera diferente en los distintos lenguajes o entornos, los términos

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 22:47

14/02/2026 22:47 3/14 Mddulo 4 (Intermedio): Archivos

mas utilizados son handles o manejadores (un tipo de puntero inteligente) o streams (una especie de
canal) (los usaremos como sinénimos aqui).

El programador, que tiene un conjunto de funciones y métodos, puede realizar ciertas operaciones en el stream,
gue afectan los archivos reales utilizando mecanismos contenidos en el nlicleo del sistema operativo.

De esta forma, puedes implementar el proceso de acceso a cualquier archivo, incluso cuando el nombre del
archivo es desconocido al momento de escribir el programa.

Las operaciones realizadas con el stream abstracto reflejan las actividades relacionadas con el archivo fisico.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
07/07/2022
07:43

info:cursos:netacad:python:pe2m4:archivos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:archivos?rev=1657205013

- PCAP
+ Module 0
+ Module 1
+ Module 2
+ Module 3
+ Module 4
+ Module 5
+ Module 6
+ Module 7
+ Module 7_copy

Sample_project.py

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 22:47

14/02/2026 22:47 5/14 Mddulo 4 (Intermedio): Archivos

Para conectar (vincular) el stream con el archivo, es necesario realizar una operacién explicita.

La operacién de conectar un stream con un archivo es llamada abrir el archivo, mientras que desconectar el
enlace se denomina cerrar el archivo.

Por lo tanto, la conclusién es que la primera operacidn realizada en el stream es siempre open (abrir) y la ultima
es close (cerrar). El programa, en efecto, es libre de manipular el stream entre estos dos eventos y manejar el
archivo asociado.

Esta libertad estd limitada por las caracteristicas fisicas del archivo y la forma en que se abrié el archivo.

Digamos nuevamente que la apertura del stream puede fallar, y puede ocurrir debido a varias razones: la mas
comun es la falta de un archivo con un nombre especifico.

También puede suceder que el archivo fisico exista, pero el programa no puede abrirlo. También existe el riesgo
de que el programa haya abierto demasiados streams, y el sistema operativo especifico puede no permitir la
apertura simultdnea de mas de n archivos (por ejemplo, 200).

Un programa bien escrito debe detectar estas aperturas fallidas y reaccionar en consecuencia.

Archivos: streams

La apertura del stream no solo esta asociada con el archivo, sino que también se debe declarar la manera en
que se procesara el stream. Esta declaracion se llama open mode (modo de apertura).

Si la apertura es exitosa, el programa solo podra realizar las operaciones que sean consistentes con el
modo abierto declarado.

Hay dos operaciones bdasicas a realizar con el stream:

e Lectura del stream: las porciones de los datos se recuperan del archivo y se colocan en un area de
memoria administrada por el programa (por ejemplo, una variable).

e Escritura del stream: Las porciones de los datos de la memoria (por ejemplo, una variable) se transfieren
al archivo.

Hay tres modos basicos utilizados para abrir un stream:

¢ Modo Lectura: un stream abierto en este modo permite solo operaciones de lectura; intentar escribir en
la transmisién provocara una excepcién (la excepcién se llama UnsupportedOperation, la cual hereda el
OSError y el ValueError, y proviene del médulo io).

¢ Modo Escritura: un stream abierto en este modo permite solo operaciones de escritura; intentar leer el
stream provocard la excepcién mencionada anteriormente.

e Modo Actualizar: un stream abierto en este modo permite tanto lectura como escritura.

Antes de discutir como manipular los streams, te debemos una explicacién. El stream se comporta casi
como una grabadora.

Cuando lees algo de un stream, un cabezal virtual se mueve sobre la transmisién de acuerdo con el nimero de
bytes transferidos desde el stream.

Cuando escribes algo en el stream el mismo cabezal se mueve a lo largo del stream registrando los datos de la
memoria.

Siempre gue hablemos de leer y escribir en el stream, trata de imaginar esta analogia. Los libros de
programacion se refieren a este mecanismo como la posicién actual del archivo, aqui también usaremos
este término.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
07/07/2022
07:43

info:cursos:netacad:python:pe2m4:archivos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:archivos?rev=1657205013

Ahora es necesario mostrarte el objeto responsable de representar los streams en los programas.

Manejo de archivos

Python supone que cada archivo esta oculto detras de un objeto de una clase adecuada.
Por supuesto, es dificil no preguntar cémo interpretar la palabra adecuada.

Los archivos se pueden procesar de muchas maneras diferentes: algunos dependen del contenido del archivo,
otros de las intenciones del programador.

En cualquier caso, diferentes archivos pueden requerir diferentes conjuntos de operaciones y comportarse de
diferentes maneras.

Un objeto de una clase adecuada es creado cuando abres el archivo y lo aniquilas al momento de
cerrarlo.

Entre estos dos eventos, puedes usar el objeto para especificar que operaciones se deben realizar en un stream
en particular. Las operaciones que puedes usar estan impuestas por la forma en que abriste el archivo.

En general, el objeto proviene de una de las clases que se muestran aqui:

IOBase

Nota: nunca se utiliza el constructor para dar vida a estos objetos. La unica forma de obtenerlos es invocar la
funcién llamada open().

La funcién analiza los argumentos proporcionados y crea automaticamente el objeto requerido.
Si deseas deshacerte del objeto, invoca el método denominado close.
La invocacién cortara la conexién con el objeto y el archivo, y eliminard el objeto.

Para nuestros propésitos, solo nos ocuparemos de los streams representados por los objetos Buffer/lOBase y
TextlOBase. Entenderas por que pronto.

Debido al tipo de contenido de los streams, todos se dividen en tipo texto y binario.

Los streams de texto estan estructurados en lineas; es decir, contienen caracteres tipograficos (letras, digitos,
signos de puntuacioén, etc.) dispuestos en filas (lineas), como se ve a simple vista cuando se mira el contenido
del archivo en el editor.

Este tipo de archivo es escrito (o leido) principalmente caracter por caracter, o linea por linea.

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 22:47

14/02/2026 22:47 7/14 Mddulo 4 (Intermedio): Archivos

Los streams binarios no contienen texto, sino una secuencia de bytes de cualquier valor. Esta secuencia puede
ser, por ejemplo, un programa ejecutable, una imagen, un audio o un videoclip, un archivo de base de datos,
etc.

Debido a que estos archivos no contienen lineas, las lecturas y escrituras se relacionan con porciones de datos
de cualquier tamafio. Por lo tanto, los datos se leen y escriben byte a byte, o bloque a bloque, donde el tamafio
del bloque generalmente varia de uno a un valor elegido arbitrariamente.

Ahora viene un problema pequefio. En los sistemas Unix/Linux, los extremos de la linea estan marcados por un
solo cardcter llamado LF (cédigo ASCII 10) designado en los programas de Python como \n.

Otros sistemas operativos, especialmente los derivados del sistema prehistérico CP/M (que también aplica a los
sistemas de la familia Windows) utilizan una convencién diferente: el final de la linea estd marcada por un par
de caracteres, CR y LF (cddigos ASCII 13 y 10) los cuales se puede codificar como \r\n.

Esta ambigliedad puede causar varias consecuencias desagradables.

Si creas un programa responsable de procesar un archivo de texto y estd escrito para Windows, puedes
reconocer los extremos de las lineas al encontrar los caracteres \rin, pero si el mismo programa se ejecuta en
un entorno Unix/Linux serd completamente indtil, y viceversa: el programa escrito para sistemas Unix/Linux
podria ser inGtil en Windows.

Estas caracteristicas indeseables del programa, que impiden o dificultan el uso del programa en diferentes
entornos, se denomina falta de portabilidad.

Del mismo modo, el rasgo del programa que permite la ejecucién en diferentes entornos se llama portabilidad.
Un programa dotado de tal rasgo se llama programa portable.

Dado que los problemas de portabilidad eran (y siguen siendo) muy graves, se tomé la decisién de resolver
definitivamente el problema de una manera que no atraiga mucho la atencién del desarrollador.

Se realizé a nivel de clases, que son responsables de leer y escribir caracteres hacia y desde el stream.
Funciona de la siguiente manera:

e Cuando el stream estd abierto y se recomienda que los datos en el archivo asociado se procesen como
texto (o no existe tal aviso), se cambia al modo texto.

e Durante la lectura y escritura de lineas desde y hacia el archivo asociado, no ocurre nada especial en el
entorno Unix, pero cuando se realizan las mismas operaciones en el entorno Windows, un proceso
llamado traduccion de caracteres de nueva linea ocurre: cuando lees una linea del archivo, cada par
de caracteres \r\n se reemplaza con un solo caracter \n, y viceversa; durante las operaciones de
escritura, cada caracter \n se reemplaza con un par de caracteres \r\n.

¢ El mecanismo es completamente transparente para el programa, el cual puede escribirse como si
estuviera destinado a procesar archivos de texto Unix/Linux solamente; el cédigo fuente ejecutado en un
entorno Windows también funcionara correctamente.

¢ Cuando el stream estd abierto, su contenido se toma tal cual es, sin ninguna conversién - no se
agregan, ni se omiten bytes.

Abriendo los streams

El abrir un stream se realiza mediante una funcién que se puede invocar de la siguiente manera:
stream = open(file, mode ‘'r', encoding = None

Vamos a analizarlo:

¢ El nombre de la funcién (open) habla por si mismo; si la apertura es exitosa, la funcién devuelve un

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
07/07/2022
07:43

info:cursos:netacad:python:pe2m4:archivos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:archivos?rev=1657205013

objeto stream; de lo contrario, se genera una excepcién (por ejemplo, FileNotFoundError si el archivo
que vas a leer no existe).

¢ El primer pardmetro de la funcién (file) especifica el nombre del archivo que se asociara al stream.

¢ El sequndo parametro (mode) especifica el modo de apertura utilizado para el stream; es una cadena
llena de una secuencia de caracteres, y cada uno de ellos tiene su propio significado especial (mds
detalles pronto).

o El tercer pardmetro (encoding) especifica el tipo de codificacién (por ejemplo, UTF-8 cuando se trabaja
con archivos de texto).

e La apertura debe ser la primera operacién realizada en el stream.

Nota: el modo y los argumentos de codificaciéon pueden omitirse; en dado caso, se tomaran sus valores
predeterminados. El modo de apertura predeterminado es leer en modo de texto, mientras que la codificacion
predeterminada depende de la plataforma utilizada.

Permitenos ahora presentarte los modos de apertura mas importantes y Utiles.

Modos para abrir los streams

r modo de apertura: lectura

e El stream serd abierto en modo lectura.
¢ El archivo asociado con el stream debe existir y tiene que ser legible, de lo contrario la funcién open()
generara una excepcion.

w modo de apertura: escritura

e El stream sera abierto en modo escritura.

¢ El archivo asociado con el stream no necesita existir. Si no existe, se creard; si existe, se truncard a la
longitud de cero (se borra); si la creacién no es posible (por ejemplo, debido a permisos del sistema) la
funcién open() generard una excepcién.

a modo de apertura: adjuntar

¢ El stream sera abierto en modo adjuntar.
e El archivo asociado con el stream no necesita existir; si no existe, se creard; si existe, el cabezal de
grabacién virtual se establecera al final del archivo (el contenido anterior del archivo permanece intacto).

r+ modo de apertura: lectura y actualizacién

¢ El stream serd abierto en modo lectura y actualizacion.

¢ El archivo asociado con el stream debe existir y tiene que permitir escritura, de lo contrario la
funcién open() generard una excepcién.

¢ Se permiten operaciones de lectura y escritura en el stream.

w+ modo de apertura: escritura y actualizacién

e El stream serd abierto en modo escritura y actualizacion.

 El archivo asociado con el stream no necesita existir; si no existe, se creard; el contenido anterior del
archivo permanece intacto.

¢ Se permiten operaciones de lectura y escritura en el stream.

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 22:47

14/02/2026 22:47 9/14 Mddulo 4 (Intermedio): Archivos

Seleccionando modo de texto y modo binario

Si hay una letra b al final de la cadena del modo significa que el stream se debe abrir en el modo binario.
Si la cadena del modo termina con una letra t el stream es abierto en modo texto.

El modo texto es el comportamiento predeterminado que se utiliza cuando no se especifica ya sea modo binario
o texto.

Finalmente, la apertura exitosa del archivo establecera la posicién actual del archivo (el cabezal virtual de
lectura/escritura) antes del primer byte del archivo si el modo no es a y después del Ultimo byte del archivo si
el modo es a.

Modo texto Modo binario Descripcion

rt rb lectura

wt wb escritura

at ab adjuntar

r+t r+b lectura y actualizacion
W+t w+b escritura y actualizacion

También puedes abrir un archivo para su creacién exclusiva. Puedes hacer esto usando el modo de apertura x.
Si el archivo ya existe, la funcién open() generara una excepcién.

Abriendo el stream por primera vez

Imagina que queremos desarrollar un programa que lea el contenido del archivo de texto llamado:
C:\Users\User\Desktop\file.txt.

¢ Coémo abrir ese archivo para leerlo? Aqui estd el fragmento del cédigo:

stream = open("C:\Users\User\Desktop\file.txt", "rt"
El procesamiento va aqui.
stream.close
Exception exc:
"No se puede abrir el archivo:", exc

(Que estd pasando aqui?

e Hemos abierto el blogue try-except ya que queremos manejar los errores de tiempo de ejecucién
suavemente.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
07/07/2022
07:43

info:cursos:netacad:python:pe2m4:archivos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:archivos?rev=1657205013

Se emplea la funcién open () para intentar abrir el archivo especificado (ten en cuenta la forma en que
hemos especificado el nombre del archivo).

El modo de apertura se define como texto para leer (como texto es la configuracion
predeterminada, podemos omitir la t en la cadena de modo).

En caso de éxito obtenemos un objeto de la funcién open() y lo asignamos a la variable del stream.

Si open () falla, manejamos la excepcién imprimiendo la informacién completa del error (es bueno saber
qué sucedié exactamente).

Streams pre-abiertos

Dijimos anteriormente que cualquier operacién del stream debe estar precedida por la invocacién de la funcién
open (). Hay tres excepciones bien definidas a esta regla.

Cuando comienza nuestro programa, los tres streams ya estan abiertos y no requieren ninguna preparacién
adicional. Ademas, tu programa puede usar estos streams explicitamente si tienes cuidado de importar el
mddulo sys:

Sys
Porque ahi es donde se coloca la declaracién de estos streams.
Los nombres de los streams son: sys.stdin, sys.stdout y sys.stderr.
Vamos a analizarlos:

¢ sys.stdin
o stdin (significa entrada estandar).
o El stream stdin normalmente se asocia con el teclado, se abre previamente para la lectura y se
considera como la fuente de datos principal para los programas en ejecucion.
o La funcion bien conocida input () lee datos de stdin por default.

¢ sys.stdout
o stdout (significa salida estandar).
o El stream stdout normalmente estd asociado con la pantalla, preabierta para escritura,
considerada como el objetivo principal para la salida de datos por el programa en ejecucién.
o La funcién bien conocida print () envia los datos al stream stdout.

e sys.stderr

o stderr (significa salida de error estandar).

o El stream stderr normalmente estd asociado con la pantalla, preabierta para escribir, considerada
como el lugar principal donde el programa en ejecucién debe enviar informacién sobre los errores
encontrados durante su trabajo.

o No hemos presentado ningln método para enviar datos a este stream (lo haremos pronto, lo
prometemos).

o La separacion de stdout (resultados Utiles producidos por el programa) de stderr (mensajes de
error, indudablemente Utiles pero no proporcionan resultados) ofrece la posibilidad de redirigir
estos dos tipos de informacién a los diferentes objetivos. Una discusién mas extensa sobre este
tema estd mas alla del alcance de nuestro curso. El manual del sistema operativo proporcionard
mas informacién sobre estos temas.

Cerrando streams

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 22:47

14/02/2026 22:47 11/14 Mddulo 4 (Intermedio): Archivos

La Ultima operacidn realizada en un stream (esto no incluye a los streams stdin, stdout, y stderr pues no lo
requieren) debe ser cerrarlo.

Esa accidn se realiza mediante un método invocado desde dentro del objeto del stream: stream.close().

El nombre de la funcién es facil de entender close(), es decir cerrar.

La funcién no espera argumentos; el stream no necesita estar abierto.

La funcién no devuelve nada pero genera una excepcién IOError en caso de un error.

La mayoria de los desarrolladores creen que la funcién close () siempre tiene éxito y, por lo tanto, no
hay necesidad de verificar si ha realizado su tarea correctamente. Esta creencia estd solo parcialmente
justificada. Si el stream se abrié para escribir y luego se realizé una serie de operaciones de escritura,
puede ocurrir que los datos enviados al stream adn no se hayan transferido al dispositivo fisico (debido a
los mecanismos de cache o buffer). Dado que el cierre del stream obliga a los bufers a descargarse, es
posible que dichas descargas fallen y, por lo tanto, close() falle también.

Ya hemos mencionado fallas causadas por funciones que operan con los streams, pero no mencionamos nada
sobre cdmo podemos identificar exactamente la causa de la falla.

La posibilidad de hacer un diagnéstico existe y es proporcionada por uno de los componentes de excepcién de
los streams. Hablaremos acerca de ellos a continuacién.

Diagnosticando problemas con los streams

El objeto IOError estd equipado con una propiedad llamada errno (el nombre viene de la frase error number,
nimero de error) y puedes accederla de la siguiente manera:

Algunas operaciones con streams.
IOError exc:
exc.errno

El valor del atributo errno se puede comparar con una de las constantes simbélicas predefinidas en médulo
errno.

Echemos un vistazo a algunas constantes seleccionadas Utiles para detectar errores en los streams:

¢ errno.EACCES - Permiso denegado
o El error se produce cuando intentas, por ejemplo, abrir un archivo con atributos de solo lectura
para abrirlo.
¢ errno.EBADF - NUmero de archivo incorrecto
o El error se produce cuando intentas, por ejemplo, operar un stream sin abrirlo.
¢ errno.EEXIST - Archivo existente
o El error se produce cuando intentas, por ejemplo, cambiar el nombre de un archivo con su nombre
anterior.
¢ errno.EFBIG - Archivo demasiado grande
o El error ocurre cuando intentas crear un archivo que es mas grande que el maximo permitido por
el sistema operativo.
¢ errno.EISDIR - Es un directorio
o El error se produce cuando intentas tratar un nombre de directorio como el nombre de un archivo
ordinario.
¢ errno.EMFILE -» Demasiados archivos abiertos
o El error se produce cuando intentas abrir simultdneamente mas streams de los aceptables para el
sistema operativo.
¢ errno.ENOENT - El archivo o directorio no existe
o El error se produce cuando intentas acceder a un archivo o directorio inexistente.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
07/07/2022
07:43

info:cursos:netacad:python:pe2m4:archivos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:archivos?rev=1657205013

¢ errno.ENOSPC - No queda espacio en el dispositivo
o El error ocurre cuando no hay espacio libre en el dispositivo.

La lista completa es mucho mas larga (incluye también algunos cddigos de error no relacionados con el
procesamiento del los streams).

Si eres un programador muy cuidadoso, puedes sentir la necesidad de usar una secuencia de sentencias similar
a las que se te presentan en el editor:

errno
S open("c:/users/user/Desktop/file.txt", "rt"
El procesamiento va aqui.
s.close

Exception exc:

exc.errno errno.ENOENT:

"E1l archivo no existe."
exc.errno errno.EMFILE:

"Demasiados archivos abiertos."
"E1l numero del error es:", exc.errno

Afortunadamente, existe una funcién que puede simplificar el cédigo de manejo de errores.
Su nombre es strerror(), y proviene del médulo os y espera solo un argumento: un nimero de error.
Su funcién es simple: proporciona un nimero de error y una cadena que describe el significado del error.

Nota: si pasas un cddigo de error inexistente (un nimero gue no esta vinculado a ningln error real), la funcién
generara una excepcion ValueError.

Ahora podemos simplificar nuestro cédigo de la siguiente manera:

0s strerror
s = open("c:/users/user/Desktop/file.txt", "rt"
El procesamiento va aqui.
s.close
Exception exc:
"El archivo no pudo ser abierto:", strerror(exc.errno

Bueno. Ahora es el momento de tratar con archivos de texto y familiarizarse con algunas técnicas basicas que
puedes utilizar para procesarlos.

Puntos Clave

1. Un archivo necesita ser abierto antes de que pueda ser procesado por un programa, y debe ser cerrado
cuando el procesamiento termine.

El abrir un archivo lo asocia con el stream, que es una representacion abstracta de los datos fisicos
almacenados en los medios. La forma en que se procesa el stream se llama modo de apertura. Existen tres

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 22:47

14/02/2026 22:47 13/14 Mddulo 4 (Intermedio): Archivos

modos de apertura:

¢ modo lectura: solo se permiten operaciones de lectura.
¢ modo escritura: solo se permiten operaciones de escritura.
e modo de actualizacién: se permiten ambas, lectura y escritura.

2. Dependiendo del contenido del archivo fisico, se pueden usar diferentes clases de Python para procesar
archivos. En general, BufferedlOBase es capaz de procesar cualquier archivo, mientras que Text/OBase es una
clase especializada dedicada al procesamiento de archivos de texto (es decir, archivos que contienen textos
visibles para humanos divididos en lineas usando marcadores de nueva linea). Por lo tanto, los streams se
pueden dividir en binarios y de texto.

3. Las siguientes sintaxis de la funcion open() se utilizan para abrir un archivo:
open(nombre archivo, modo-modo apertura, codificacidén-codificacion de texto

La invocacién crea un objeto stream y lo asocia con el archivo llamado nombre_archivo, utilizando el modo
modo_apertura y configurando la especificada codificacion_de_texto, 0 genera una excepcion en caso de un
error.

4. Los tres streams predefinidos que ya estan abiertos cuando inicia el programa son:

¢ sys.stdin: entrada estandar.
¢ sys.stdout: salida estandar.
¢ sys.stderr: salida de error estandar.

4. El objeto de la excepcién IOError, creado cuando cualquier operacién de archivo falla (incluyendo las
operaciones de apertura), contiene una propiedad llamada errno, que contiene el cédigo de finalizacién de la
accion fallida. Utiliza este valor para diagnosticar el problema.

Procesamiento de archivos de texto (incompleto)

En esta leccién vamos a preparar un archivo de texto simple con contenido breve y simple.

Te mostraremos algunas técnicas bdsicas que puedes utilizar para leer el contenido del archivo y poder
procesarlo.

El procesamiento serd muy simple: vas a copiar el contenido del archivo a la consola y contaras todos los
caracteres que el programa ha leido.

Pero recuerda: nuestra comprension de un archivo de texto es muy estricta. Es un archivo de texto sin formato:
puede contener solo texto, sin decoraciones adicionales (formato, diferentes fuentes, etc.).

Es por eso que debes evitar crear el archivo utilizando un procesador de texto avanzado como MS Word,
LibreOffice Writer o algo asi. Utiliza los conceptos béasicos que ofrece tu sistema operativo: Bloc de notas, vim,
gedit, etc.

Si tus archivos de texto contienen algunos caracteres nacionales no cubiertos por el juego de caracteres ASCII
estandar, es posible que necesites un paso adicional. La invocacidn de tu funcién open() puede requerir un
argumento que denote una codificacién especifica del texto.

Por ejemplo, si estds utilizando un sistema operativo Unix/Linux configurado para usar UTF-8 como una
configuracién de todo el sistema, la funcién open() puede verse de la siguiente manera:

stream = open('file.txt', 'rt', encoding="utf-8')

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
07/07/2022
07:43

info:cursos:netacad:python:pe2m4:archivos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:archivos?rev=1657205013

Donde el argumento de codificacién debe establecerse en un valor dentro de una cadena que representa la
codificacién de texto adecuada (UTF-8, en este caso).

Consulta la documentacién de tu sistema operativo para encontrar el nombre de codificacién adecuado para tu
entorno.

Nota

A los fines de nuestros experimentos con el procesamiento de archivos que se llevan a cabo en esta seccién,
vamos a utilizar un conjunto de archivos precargados (p. Ej., los archivos tzop.txt, o text.txt) con los cuales
podras trabajar. Si deseas trabajar con tus propios archivos localmente en tu maquina, te recomendamos que lo
hagas y que utilices IDLE o cualquier otro Entorno de Desarrollo para llevar a cabo tus propias pruebas.

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:

Last update: 07/07/2022 07:43

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 22:47

https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:archivos?rev=1657205013

	Módulo 4 (Intermedio): Archivos
	Accediendo archivos desde código en Python
	Nombres de archivos
	Archivos: streams
	Manejo de archivos
	Abriendo los streams
	Modos para abrir los streams
	Seleccionando modo de texto y modo binario
	Abriendo el stream por primera vez
	Streams pre-abiertos
	Cerrando streams
	Diagnosticando problemas con los streams
	Puntos Clave
	Procesamiento de archivos de texto (incompleto)

