
14/02/2026 20:19 1/24 Módulo 4 (Intermedio): Archivos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Módulo 4 (Intermedio): Archivos

Accediendo archivos desde código en Python

Uno de los problemas más comunes en el trabajo del desarrollador es procesar datos almacenados en
archivos que generalmente se almacenan físicamente utilizando dispositivos de almacenamiento: discos duros,
ópticos, de red o de estado sólido.

Es fácil imaginar un programa que clasifique 20 números, y es igualmente fácil imaginar que el usuario de este
programa ingrese estos veinte números directamente desde el teclado.

Es mucho más difícil imaginar la misma tarea cuando hay 20,000 números para ordenar, y no existe un solo
usuario que pueda ingresar estos números sin cometer un error.

Es mucho más fácil imaginar que estos números se almacenan en el archivo que lee el programa. El programa
clasifica los números y no los envía a la pantalla, sino que crea un nuevo archivo y guarda la secuencia
ordenada de números allí.

Si queremos implementar una base de datos simple, la única forma de almacenar la información entre
ejecuciones del programa es guardarla en un archivo (o archivos si tu base de datos es más compleja).

Es un principio que cualquier problema de programación no simple se basa en el uso de archivos, ya sea que
procese imágenes (almacenadas en archivos), multiplique matrices (almacenadas en archivos) o calcule
salarios e impuestos (lectura de datos almacenados en archivos).

Puedes preguntarte por que hemos esperado hasta ahora para mostrarte esto.

La respuesta es muy simple: la forma en que Python accede y procesa los archivos se implementa utilizando un
conjunto consistente de objetos. No hay mejor momento para hablar de esto.

Nombres de archivos

Los diferentes sistemas operativos pueden tratar a los archivos de diferentes maneras. Por ejemplo, Windows
usa una convención de nomenclatura diferente a la adoptada en los sistemas Unix/Linux.

Si utilizamos la noción de un nombre de archivo canónico (un nombre que define de forma exclusiva la
ubicación del archivo, independientemente de su nivel en el árbol de directorios), podemos darnos cuenta de
que estos nombres se ven diferentes en Windows y en Unix/Linux:

Como puedes ver, los sistemas derivados de Unix/Linux no usan la letra de la unidad de disco (por ejemplo, C:)

Last
update:
07/07/2022
14:11

info:cursos:netacad:python:pe2m4:archivos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:archivos?rev=1657228261

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 20:19

y todos los directorios crecen desde un directorio raíz llamado /, mientras que los sistemas Windows reconocen
el directorio raíz como \.

Además, los nombres de archivo de sistemas Unix/Linux distinguen entre mayúsculas y minúsculas. Los
sistemas Windows almacenan mayúsculas y minúsculas en el nombre del archivo, pero no distinguen entre
ellas.

Esto significa que estas dos cadenas: EsteEsElNombreDelArchivo y esteeselnombredelarchivo describen dos
archivos diferentes en sistemas Unix/Linux, pero tienen el mismo nombre para un solo archivo en sistemas
Windows.

La diferencia principal y más llamativa es que debes usar dos separadores diferentes para los nombres de
directorio: \ en Windows y / en Unix/Linux.

Esta diferencia no es muy importante para el usuario normal, pero es muy importante al escribir programas
en Python.

Para entender por qué, intenta recordar el papel muy específico que desempeña \ dentro de las cadenas en
Python.

Supongamos que estás interesado en un archivo en particular ubicado en el directorio dir, y con el nombre de
file.

Supongamos también que deseas asignar a una cadena el nombre del archivo.

En sistemas Unix/Linux, sería de la siguiente manera:

name = "/dir/file"

Pero si intentas codificarlo para el sistema Windows:

name = "\dir\file"

Obtendrás una sorpresa desagradable: Python generará un error o la ejecución del programa se comportará de
manera extraña, como si el nombre del archivo se hubiera distorsionado de alguna manera.

De hecho, no es extraño en lo absoluto, pero es bastante obvio y natural. Python usa la \ como un carácter de
escape (como \n).

Esto significa que los nombres de archivo de Windows deben escribirse de la siguiente manera:

name = "\\dir\\file"

Afortunadamente, también hay una solución más. Python es lo suficientemente inteligente como para poder
convertir diagonales en diagonales invertidas cada vez que descubre que el sistema operativo lo requiere.

Esto significa que cualquiera de las siguientes asignaciones:

name = "/dir/file"
name = "c:/dir/file"

Funcionará también con Windows.

Cualquier programa escrito en Python (y no solo en Python, porque esa convención se aplica a prácticamente
todos los lenguajes de programación) no se comunica con los archivos directamente, sino a través de algunas
entidades abstractas que se nombran de manera diferente en los distintos lenguajes o entornos, los términos

14/02/2026 20:19 3/24 Módulo 4 (Intermedio): Archivos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

más utilizados son handles o manejadores (un tipo de puntero inteligente) o streams (una especie de
canal) (los usaremos como sinónimos aquí).

El programador, que tiene un conjunto de funciones y métodos, puede realizar ciertas operaciones en el stream,
que afectan los archivos reales utilizando mecanismos contenidos en el núcleo del sistema operativo.

De esta forma, puedes implementar el proceso de acceso a cualquier archivo, incluso cuando el nombre del
archivo es desconocido al momento de escribir el programa.

Las operaciones realizadas con el stream abstracto reflejan las actividades relacionadas con el archivo físico.

Last
update:
07/07/2022
14:11

info:cursos:netacad:python:pe2m4:archivos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:archivos?rev=1657228261

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 20:19

14/02/2026 20:19 5/24 Módulo 4 (Intermedio): Archivos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Para conectar (vincular) el stream con el archivo, es necesario realizar una operación explícita.

La operación de conectar un stream con un archivo es llamada abrir el archivo, mientras que desconectar el
enlace se denomina cerrar el archivo.

Por lo tanto, la conclusión es que la primera operación realizada en el stream es siempre open (abrir) y la ultima
es close (cerrar). El programa, en efecto, es libre de manipular el stream entre estos dos eventos y manejar el
archivo asociado.

Esta libertad está limitada por las características físicas del archivo y la forma en que se abrió el archivo.

Digamos nuevamente que la apertura del stream puede fallar, y puede ocurrir debido a varias razones: la más
común es la falta de un archivo con un nombre específico.

También puede suceder que el archivo físico exista, pero el programa no puede abrirlo. También existe el riesgo
de que el programa haya abierto demasiados streams, y el sistema operativo específico puede no permitir la
apertura simultánea de más de n archivos (por ejemplo, 200).

Un programa bien escrito debe detectar estas aperturas fallidas y reaccionar en consecuencia.

Archivos: streams

La apertura del stream no solo está asociada con el archivo, sino que también se debe declarar la manera en
que se procesará el stream. Esta declaración se llama open mode (modo de apertura).

Si la apertura es exitosa, el programa solo podrá realizar las operaciones que sean consistentes con el
modo abierto declarado.

Hay dos operaciones básicas a realizar con el stream:

Lectura del stream: las porciones de los datos se recuperan del archivo y se colocan en un área de
memoria administrada por el programa (por ejemplo, una variable).
Escritura del stream: Las porciones de los datos de la memoria (por ejemplo, una variable) se transfieren
al archivo.

Hay tres modos básicos utilizados para abrir un stream:

Modo Lectura: un stream abierto en este modo permite solo operaciones de lectura; intentar escribir en
la transmisión provocará una excepción (la excepción se llama UnsupportedOperation, la cual hereda el
OSError y el ValueError, y proviene del módulo io).
Modo Escritura: un stream abierto en este modo permite solo operaciones de escritura; intentar leer el
stream provocará la excepción mencionada anteriormente.
Modo Actualizar: un stream abierto en este modo permite tanto lectura como escritura.

Antes de discutir como manipular los streams, te debemos una explicación. El stream se comporta casi
como una grabadora.

Cuando lees algo de un stream, un cabezal virtual se mueve sobre la transmisión de acuerdo con el número de
bytes transferidos desde el stream.

Cuando escribes algo en el stream el mismo cabezal se mueve a lo largo del stream registrando los datos de la
memoria.

Siempre que hablemos de leer y escribir en el stream, trata de imaginar esta analogía. Los libros de
programación se refieren a este mecanismo como la posición actual del archivo, aquí también usaremos
este término.

Last
update:
07/07/2022
14:11

info:cursos:netacad:python:pe2m4:archivos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:archivos?rev=1657228261

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 20:19

Ahora es necesario mostrarte el objeto responsable de representar los streams en los programas.

Manejo de archivos

Python supone que cada archivo está oculto detrás de un objeto de una clase adecuada.

Por supuesto, es difícil no preguntar cómo interpretar la palabra adecuada.

Los archivos se pueden procesar de muchas maneras diferentes: algunos dependen del contenido del archivo,
otros de las intenciones del programador.

En cualquier caso, diferentes archivos pueden requerir diferentes conjuntos de operaciones y comportarse de
diferentes maneras.

Un objeto de una clase adecuada es creado cuando abres el archivo y lo aniquilas al momento de
cerrarlo.

Entre estos dos eventos, puedes usar el objeto para especificar que operaciones se deben realizar en un stream
en particular. Las operaciones que puedes usar están impuestas por la forma en que abriste el archivo.

En general, el objeto proviene de una de las clases que se muestran aquí:

Nota: nunca se utiliza el constructor para dar vida a estos objetos. La unica forma de obtenerlos es invocar la
función llamada open().

La función analiza los argumentos proporcionados y crea automáticamente el objeto requerido.

Si deseas deshacerte del objeto, invoca el método denominado close.

La invocación cortará la conexión con el objeto y el archivo, y eliminará el objeto.

Para nuestros propósitos, solo nos ocuparemos de los streams representados por los objetos BufferIOBase y
TextIOBase. Entenderás por que pronto.

Debido al tipo de contenido de los streams, todos se dividen en tipo texto y binario.

Los streams de texto están estructurados en líneas; es decir, contienen caracteres tipográficos (letras, dígitos,
signos de puntuación, etc.) dispuestos en filas (líneas), como se ve a simple vista cuando se mira el contenido
del archivo en el editor.

Este tipo de archivo es escrito (o leído) principalmente carácter por carácter, o línea por línea.

14/02/2026 20:19 7/24 Módulo 4 (Intermedio): Archivos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Los streams binarios no contienen texto, sino una secuencia de bytes de cualquier valor. Esta secuencia puede
ser, por ejemplo, un programa ejecutable, una imagen, un audio o un videoclip, un archivo de base de datos,
etc.

Debido a que estos archivos no contienen líneas, las lecturas y escrituras se relacionan con porciones de datos
de cualquier tamaño. Por lo tanto, los datos se leen y escriben byte a byte, o bloque a bloque, donde el tamaño
del bloque generalmente varía de uno a un valor elegido arbitrariamente.

Ahora viene un problema pequeño. En los sistemas Unix/Linux, los extremos de la línea están marcados por un
solo carácter llamado LF (código ASCII 10) designado en los programas de Python como \n.

Otros sistemas operativos, especialmente los derivados del sistema prehistórico CP/M (que también aplica a los
sistemas de la familia Windows) utilizan una convención diferente: el final de la línea está marcada por un par
de caracteres, CR y LF (códigos ASCII 13 y 10) los cuales se puede codificar como \r\n.

Esta ambigüedad puede causar varias consecuencias desagradables.

Si creas un programa responsable de procesar un archivo de texto y está escrito para Windows, puedes
reconocer los extremos de las líneas al encontrar los caracteres \r\n, pero si el mismo programa se ejecuta en
un entorno Unix/Linux será completamente inútil, y viceversa: el programa escrito para sistemas Unix/Linux
podría ser inútil en Windows.

Estas características indeseables del programa, que impiden o dificultan el uso del programa en diferentes
entornos, se denomina falta de portabilidad.

Del mismo modo, el rasgo del programa que permite la ejecución en diferentes entornos se llama portabilidad.
Un programa dotado de tal rasgo se llama programa portable.

Dado que los problemas de portabilidad eran (y siguen siendo) muy graves, se tomó la decisión de resolver
definitivamente el problema de una manera que no atraiga mucho la atención del desarrollador.

Se realizó a nivel de clases, que son responsables de leer y escribir caracteres hacia y desde el stream.
Funciona de la siguiente manera:

Cuando el stream está abierto y se recomienda que los datos en el archivo asociado se procesen como
texto (o no existe tal aviso), se cambia al modo texto.
Durante la lectura y escritura de líneas desde y hacia el archivo asociado, no ocurre nada especial en el
entorno Unix, pero cuando se realizan las mismas operaciones en el entorno Windows, un proceso
llamado traducción de caracteres de nueva línea ocurre: cuando lees una línea del archivo, cada par
de caracteres \r\n se reemplaza con un solo carácter \n, y viceversa; durante las operaciones de
escritura, cada carácter \n se reemplaza con un par de caracteres \r\n.
El mecanismo es completamente transparente para el programa, el cual puede escribirse como si
estuviera destinado a procesar archivos de texto Unix/Linux solamente; el código fuente ejecutado en un
entorno Windows también funcionará correctamente.
Cuando el stream está abierto, su contenido se toma tal cual es, sin ninguna conversión - no se
agregan, ni se omiten bytes.

Abriendo los streams

El abrir un stream se realiza mediante una función que se puede invocar de la siguiente manera:

stream = open(file, mode = 'r', encoding = None)

Vamos a analizarlo:

El nombre de la función (open) habla por si mismo; si la apertura es exitosa, la función devuelve un

Last
update:
07/07/2022
14:11

info:cursos:netacad:python:pe2m4:archivos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:archivos?rev=1657228261

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 20:19

objeto stream; de lo contrario, se genera una excepción (por ejemplo, FileNotFoundError si el archivo
que vas a leer no existe).
El primer parámetro de la función (file) especifica el nombre del archivo que se asociará al stream.
El segundo parámetro (mode) especifica el modo de apertura utilizado para el stream; es una cadena
llena de una secuencia de caracteres, y cada uno de ellos tiene su propio significado especial (más
detalles pronto).
El tercer parámetro (encoding) especifica el tipo de codificación (por ejemplo, UTF-8 cuando se trabaja
con archivos de texto).
La apertura debe ser la primera operación realizada en el stream.

Nota: el modo y los argumentos de codificación pueden omitirse; en dado caso, se tomarán sus valores
predeterminados. El modo de apertura predeterminado es leer en modo de texto, mientras que la codificación
predeterminada depende de la plataforma utilizada.

Permítenos ahora presentarte los modos de apertura más importantes y útiles.

Modos para abrir los streams

r modo de apertura: lectura

El stream será abierto en modo lectura.
El archivo asociado con el stream debe existir y tiene que ser legible, de lo contrario la función open()
generará una excepción.

w modo de apertura: escritura

El stream será abierto en modo escritura.
El archivo asociado con el stream no necesita existir. Si no existe, se creará; si existe, se truncará a la
longitud de cero (se borra); si la creación no es posible (por ejemplo, debido a permisos del sistema) la
función open() generará una excepción.

a modo de apertura: adjuntar

El stream será abierto en modo adjuntar.
El archivo asociado con el stream no necesita existir; si no existe, se creará; si existe, el cabezal de
grabación virtual se establecerá al final del archivo (el contenido anterior del archivo permanece intacto).

r+ modo de apertura: lectura y actualización

El stream será abierto en modo lectura y actualización.
El archivo asociado con el stream debe existir y tiene que permitir escritura, de lo contrario la
función open() generará una excepción.
Se permiten operaciones de lectura y escritura en el stream.

w+ modo de apertura: escritura y actualización

El stream será abierto en modo escritura y actualización.
El archivo asociado con el stream no necesita existir; si no existe, se creará; el contenido anterior del
archivo permanece intacto.
Se permiten operaciones de lectura y escritura en el stream.

14/02/2026 20:19 9/24 Módulo 4 (Intermedio): Archivos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Seleccionando modo de texto y modo binario

Si hay una letra b al final de la cadena del modo significa que el stream se debe abrir en el modo binario.

Si la cadena del modo termina con una letra t el stream es abierto en modo texto.

El modo texto es el comportamiento predeterminado que se utiliza cuando no se especifica ya sea modo binario
o texto.

Finalmente, la apertura exitosa del archivo establecerá la posición actual del archivo (el cabezal virtual de
lectura/escritura) antes del primer byte del archivo si el modo no es a y después del último byte del archivo si
el modo es a.

También puedes abrir un archivo para su creación exclusiva. Puedes hacer esto usando el modo de apertura x.
Si el archivo ya existe, la función open() generará una excepción.

Abriendo el stream por primera vez

Imagina que queremos desarrollar un programa que lea el contenido del archivo de texto llamado:

C:\Users\User\Desktop\file.txt.

¿Cómo abrir ese archivo para leerlo? Aquí está el fragmento del código:

try:
 stream = open("C:\Users\User\Desktop\file.txt", "rt")
 # El procesamiento va aquí.
 stream.close()
except Exception as exc:
 print("No se puede abrir el archivo:", exc)

¿Que está pasando aqui?

Hemos abierto el bloque try-except ya que queremos manejar los errores de tiempo de ejecución
suavemente.

Last
update:
07/07/2022
14:11

info:cursos:netacad:python:pe2m4:archivos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:archivos?rev=1657228261

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 20:19

Se emplea la función open() para intentar abrir el archivo especificado (ten en cuenta la forma en que
hemos especificado el nombre del archivo).
El modo de apertura se define como texto para leer (como texto es la configuración
predeterminada, podemos omitir la t en la cadena de modo).
En caso de éxito obtenemos un objeto de la función open() y lo asignamos a la variable del stream.
Si open() falla, manejamos la excepción imprimiendo la información completa del error (es bueno saber
qué sucedió exactamente).

Streams pre-abiertos

Dijimos anteriormente que cualquier operación del stream debe estar precedida por la invocación de la función
open(). Hay tres excepciones bien definidas a esta regla.

Cuando comienza nuestro programa, los tres streams ya están abiertos y no requieren ninguna preparación
adicional. Además, tu programa puede usar estos streams explícitamente si tienes cuidado de importar el
módulo sys:

import sys

Porque ahí es donde se coloca la declaración de estos streams.

Los nombres de los streams son: sys.stdin, sys.stdout y sys.stderr.

Vamos a analizarlos:

sys.stdin
stdin (significa entrada estándar).
El stream stdin normalmente se asocia con el teclado, se abre previamente para la lectura y se
considera como la fuente de datos principal para los programas en ejecución.
La función bien conocida input() lee datos de stdin por default.

sys.stdout
stdout (significa salida estándar).
El stream stdout normalmente está asociado con la pantalla, preabierta para escritura,
considerada como el objetivo principal para la salida de datos por el programa en ejecución.
La función bien conocida print() envía los datos al stream stdout.

sys.stderr
stderr (significa salida de error estándar).
El stream stderr normalmente está asociado con la pantalla, preabierta para escribir, considerada
como el lugar principal donde el programa en ejecución debe enviar información sobre los errores
encontrados durante su trabajo.
No hemos presentado ningún método para enviar datos a este stream (lo haremos pronto, lo
prometemos).
La separación de stdout (resultados útiles producidos por el programa) de stderr (mensajes de
error, indudablemente útiles pero no proporcionan resultados) ofrece la posibilidad de redirigir
estos dos tipos de información a los diferentes objetivos. Una discusión más extensa sobre este
tema está más allá del alcance de nuestro curso. El manual del sistema operativo proporcionará
más información sobre estos temas.

Cerrando streams

14/02/2026 20:19 11/24 Módulo 4 (Intermedio): Archivos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

La última operación realizada en un stream (esto no incluye a los streams stdin, stdout, y stderr pues no lo
requieren) debe ser cerrarlo.

Esa acción se realiza mediante un método invocado desde dentro del objeto del stream: stream.close().

El nombre de la función es fácil de entender close(), es decir cerrar.
La función no espera argumentos; el stream no necesita estar abierto.
La función no devuelve nada pero genera una excepción IOError en caso de un error.
La mayoría de los desarrolladores creen que la función close() siempre tiene éxito y, por lo tanto, no
hay necesidad de verificar si ha realizado su tarea correctamente. Esta creencia está solo parcialmente
justificada. Si el stream se abrió para escribir y luego se realizó una serie de operaciones de escritura,
puede ocurrir que los datos enviados al stream aún no se hayan transferido al dispositivo físico (debido a
los mecanismos de cache o buffer). Dado que el cierre del stream obliga a los bufers a descargarse, es
posible que dichas descargas fallen y, por lo tanto, close() falle también.

Ya hemos mencionado fallas causadas por funciones que operan con los streams, pero no mencionamos nada
sobre cómo podemos identificar exactamente la causa de la falla.

La posibilidad de hacer un diagnóstico existe y es proporcionada por uno de los componentes de excepción de
los streams. Hablaremos acerca de ellos a continuación.

Diagnosticando problemas con los streams

El objeto IOError está equipado con una propiedad llamada errno (el nombre viene de la frase error number,
número de error) y puedes accederla de la siguiente manera:

try:
 # Algunas operaciones con streams.
except IOError as exc:
 print(exc.errno)

El valor del atributo errno se puede comparar con una de las constantes simbólicas predefinidas en módulo
errno.

Echemos un vistazo a algunas constantes seleccionadas útiles para detectar errores en los streams:

errno.EACCES → Permiso denegado
El error se produce cuando intentas, por ejemplo, abrir un archivo con atributos de solo lectura
para abrirlo.

errno.EBADF → Número de archivo incorrecto
El error se produce cuando intentas, por ejemplo, operar un stream sin abrirlo.

errno.EEXIST → Archivo existente
El error se produce cuando intentas, por ejemplo, cambiar el nombre de un archivo con su nombre
anterior.

errno.EFBIG → Archivo demasiado grande
El error ocurre cuando intentas crear un archivo que es más grande que el máximo permitido por
el sistema operativo.

errno.EISDIR → Es un directorio
El error se produce cuando intentas tratar un nombre de directorio como el nombre de un archivo
ordinario.

errno.EMFILE → Demasiados archivos abiertos
El error se produce cuando intentas abrir simultáneamente más streams de los aceptables para el
sistema operativo.

errno.ENOENT → El archivo o directorio no existe
El error se produce cuando intentas acceder a un archivo o directorio inexistente.

Last
update:
07/07/2022
14:11

info:cursos:netacad:python:pe2m4:archivos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:archivos?rev=1657228261

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 20:19

errno.ENOSPC → No queda espacio en el dispositivo
El error ocurre cuando no hay espacio libre en el dispositivo.

La lista completa es mucho más larga (incluye también algunos códigos de error no relacionados con el
procesamiento del los streams).

Si eres un programador muy cuidadoso, puedes sentir la necesidad de usar una secuencia de sentencias similar
a las que se te presentan en el editor:

import errno

try:
 s = open("c:/users/user/Desktop/file.txt", "rt")
 # El procesamiento va aquí.
 s.close()
except Exception as exc:
 if exc.errno == errno.ENOENT:
 print("El archivo no existe.")
 elif exc.errno == errno.EMFILE:
 print("Demasiados archivos abiertos.")
 else:
 print("El numero del error es:", exc.errno)

Afortunadamente, existe una función que puede simplificar el código de manejo de errores.

Su nombre es strerror(), y proviene del módulo os y espera solo un argumento: un número de error.

Su función es simple: proporciona un número de error y una cadena que describe el significado del error.

Nota: si pasas un código de error inexistente (un número que no está vinculado a ningún error real), la función
generará una excepción ValueError.

Ahora podemos simplificar nuestro código de la siguiente manera:

from os import strerror

try:
 s = open("c:/users/user/Desktop/file.txt", "rt")
 # El procesamiento va aquí.
 s.close()
except Exception as exc:
 print("El archivo no pudo ser abierto:", strerror(exc.errno))

Bueno. Ahora es el momento de tratar con archivos de texto y familiarizarse con algunas técnicas básicas que
puedes utilizar para procesarlos.

Puntos Clave

1. Un archivo necesita ser abierto antes de que pueda ser procesado por un programa, y debe ser cerrado
cuando el procesamiento termine.

El abrir un archivo lo asocia con el stream, que es una representación abstracta de los datos físicos
almacenados en los medios. La forma en que se procesa el stream se llama modo de apertura. Existen tres

14/02/2026 20:19 13/24 Módulo 4 (Intermedio): Archivos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

modos de apertura:

modo lectura: solo se permiten operaciones de lectura.
modo escritura: solo se permiten operaciones de escritura.
modo de actualización: se permiten ambas, lectura y escritura.

2. Dependiendo del contenido del archivo físico, se pueden usar diferentes clases de Python para procesar
archivos. En general, BufferedIOBase es capaz de procesar cualquier archivo, mientras que TextIOBase es una
clase especializada dedicada al procesamiento de archivos de texto (es decir, archivos que contienen textos
visibles para humanos divididos en líneas usando marcadores de nueva línea). Por lo tanto, los streams se
pueden dividir en binarios y de texto.

3. Las siguientes sintaxis de la funcion open() se utilizan para abrir un archivo:

open(nombre_archivo, modo=modo_apertura, codificación=codificacion_de_texto)

La invocación crea un objeto stream y lo asocia con el archivo llamado nombre_archivo, utilizando el modo
modo_apertura y configurando la especificada codificacion_de_texto, o genera una excepción en caso de un
error.

4. Los tres streams predefinidos que ya estan abiertos cuando inicia el programa son:

sys.stdin: entrada estandar.
sys.stdout: salida estandar.
sys.stderr: salida de error estandar.

4. El objeto de la excepción IOError, creado cuando cualquier operación de archivo falla (incluyendo las
operaciones de apertura), contiene una propiedad llamada errno, que contiene el código de finalización de la
acción fallida. Utiliza este valor para diagnosticar el problema.

Procesamiento de archivos de texto (incompleto)

En esta lección vamos a preparar un archivo de texto simple con contenido breve y simple.

Te mostraremos algunas técnicas básicas que puedes utilizar para leer el contenido del archivo y poder
procesarlo.

El procesamiento será muy simple: vas a copiar el contenido del archivo a la consola y contarás todos los
caracteres que el programa ha leído.

Pero recuerda: nuestra comprensión de un archivo de texto es muy estricta. Es un archivo de texto sin formato:
puede contener solo texto, sin decoraciones adicionales (formato, diferentes fuentes, etc.).

Es por eso que debes evitar crear el archivo utilizando un procesador de texto avanzado como MS Word,
LibreOffice Writer o algo así. Utiliza los conceptos básicos que ofrece tu sistema operativo: Bloc de notas, vim,
gedit, etc.

Si tus archivos de texto contienen algunos caracteres nacionales no cubiertos por el juego de caracteres ASCII
estándar, es posible que necesites un paso adicional. La invocación de tu función open() puede requerir un
argumento que denote una codificación específica del texto.

Por ejemplo, si estás utilizando un sistema operativo Unix/Linux configurado para usar UTF-8 como una
configuración de todo el sistema, la función open() puede verse de la siguiente manera:

stream = open('file.txt', 'rt', encoding='utf-8')

Last
update:
07/07/2022
14:11

info:cursos:netacad:python:pe2m4:archivos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:archivos?rev=1657228261

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 20:19

Donde el argumento de codificación debe establecerse en un valor dentro de una cadena que representa la
codificación de texto adecuada (UTF-8, en este caso).

Consulta la documentación de tu sistema operativo para encontrar el nombre de codificación adecuado para tu
entorno.

Nota: A los fines de nuestros experimentos con el procesamiento de archivos que se llevan a cabo en esta
sección, vamos a utilizar un conjunto de archivos precargados (p. Ej., los archivos tzop.txt, o text.txt) con los
cuales podrás trabajar. Si deseas trabajar con tus propios archivos localmente en tu máquina, te recomendamos
que lo hagas y que utilices IDLE o cualquier otro Entorno de Desarrollo para llevar a cabo tus propias pruebas.

Se abre el archivo tzop.txt en modo lectura, devolviéndolo como un objeto del
tipo archivo:
stream = open("tzop.txt", "rt", encoding = "utf-8")

Se imprime el contenido del archivo:
print(stream.read())

La lectura del contenido de un archivo de texto se puede realizar utilizando diferentes métodos; ninguno de
ellos es mejor o peor que otro. Depende de ti cual de ellos prefieres y te gusta.

Algunos de ellos serán a veces más prácticos y otros más problemáticos. Se flexible. No tengas miedo de
cambiar tus preferencias.

El más básico de estos métodos es el que ofrece la función read(), la cual pudiste ver en acción en la lección
anterior.

Si se aplica a un archivo de texto, la función es capaz de:

Leer un número determinado de caracteres (incluso solo uno) del archivo y devolverlos como una
cadena.
Leer todo el contenido del archivo y devolverlo como una cadena.
Si no hay nada más que leer (el cabezal de lectura virtual llega al final del archivo), la función devuelve
una cadena vacía.

Comenzaremos con la variante más simple y usaremos un archivo llamado text.txt. El archivo contiene lo
siguiente:

Lo hermoso es mejor que lo feo.
Explícito es mejor que implícito.
Simple es mejor que complejo.
Complejo es mejor que complicado.

Ahora observa el código en el editor y analicémoslo.

from os import strerror

try:
 counter = 0
 stream = open('text.txt', "rt")
 char = stream.read(1)
 while char != '':
 print(char, end='')
 counter += 1
 char = stream.read(1)

14/02/2026 20:19 15/24 Módulo 4 (Intermedio): Archivos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

 stream.close()
 print("\n\nCaracteres en el archivo:", counter)
except IOError as e:
 print("Se produjo un error de E/S:", strerror(e.errno))

La rutina es bastante simple:

Se usa el mecanismo try-except y se abre el archivo con el nombre (text.txt en este caso).
Intenta leer el primer carácter del archivo (char = stream.read(1)).
Si tienes éxito (esto se demuestra por el resultado positivo de la condición while), se muestra el carácter
(nota el argumento end=, ¡es importante! ¡No querrás saltar a una nueva línea después de cada
carácter!).
Tambien, se actualiza el contador (counter),
Intenta leer el siguiente carácter y el proceso se repite.

Si estás absolutamente seguro de que la longitud del archivo es segura y puedes leer todo el archivo en la
memoria de una vez, puedes hacerlo: la función read(), invocada sin ningún argumento o con un argumento
que se evalúa a None, hará el trabajo por ti.

Recuerda: el leer un archivo muy grande (en terabytes) usando este método puede dañar tu sistema
operativo.

No esperes milagros: la memoria de la computadora no se puede extender.

from os import strerror

try:
 counter = 0
 stream = open('text.txt', "rt")
 content = stream.read()
 for char in content:
 print(char, end='')
 counter += 1
 stream.close()
 print("\n\nCaracteres en el archivo:", counter)
except IOError as e:
 print("Se produjo un error de E/S:", strerr(e.errno))

Vamos a analizarlo:

Abre el archivo, como anteriormente se hizo. Lee el contenido mediante una invocación de la función read().
Después, se procesa el texto, iterando con un bucle for su contenido, y se actualiza el valor del contador en
cada vuelta del bucle. El resultado será exactamente el mismo que en el ejemplo anterior.

Procesando archivos de texto: readline()

Si deseas manejar el contenido del archivo como un conjunto de líneas, no como un montón de caracteres,
el método readline() te ayudará con eso.

El método intenta leer una línea completa de texto del archivo, y la devuelve como una cadena en caso de
éxito. De lo contrario, devuelve una cadena vacía.

Esto abre nuevas oportunidades: ahora también puedes contar líneas fácilmente, no solo caracteres.

from os import strerror

Last
update:
07/07/2022
14:11

info:cursos:netacad:python:pe2m4:archivos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:archivos?rev=1657228261

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 20:19

try:
 character_counter = line_counter = 0
 stream = open('text.txt', 'rt')
 line = stream.readline()
 while line != '':
 line_counter += 1
 for char in line:
 print(char, end='')
 character_counter += 1
 line = stream.readline()
 stream.close()
 print("\n\nCaracteres en el archivo:", character_counter)
 print("Líneas en el archivo: ", line_counter)
except IOError as e:
 print("Se produjo un error de E/S:", strerror(e.errno))

Como puedes ver, la idea general es exactamente la misma que en los dos ejemplos anteriores.

Procesando archivos de texto: readlines()

Otro método, que maneja el archivo de texto como un conjunto de líneas, no como caracteres, es
readlines().

Cuando el método readlines(), se invoca sin argumentos, intenta leer todo el contenido del archivo y
devuelve una lista de cadenas, un elemento por línea del archivo.

Si no estás seguro de si el tamaño del archivo es lo suficientemente pequeño y no deseas probar el sistema
operativo, puedes convencer al método readlines() de leer no más de un número especificado de bytes a la
vez (el valor de retorno sigue siendo el mismo, es una lista de una cadena).

Siéntete libre de experimentar con el siguiente código de ejemplo para entender cómo funciona el método
readlines():

stream = open("text.txt")
print(stream.readlines(20))
print(stream.readlines(20))
print(stream.readlines(20))
print(stream.readlines(20))
stream.close()

El tamaño máximo del búfer de entrada aceptado se pasa al método como argumento.

Puedes esperar que readlines() procese el contenido del archivo de manera más efectiva que readline(),
ya que puede ser invocado menos veces.

Nota: cuando no hay nada que leer del archivo, el método devuelve una lista vacía. Úsalo para detectar el final
del archivo.

Puedes esperar que al aumentar el tamaño del búfer mejore el rendimiento de entrada, pero no hay una regla
de oro para ello: intenta encontrar los valores óptimos por ti mismo.

from os import strerror

14/02/2026 20:19 17/24 Módulo 4 (Intermedio): Archivos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

try:
 character_counter = line_counter = 0
 stream = open('text.txt', 'rt')
 lines = stream.readlines(20)
 while len(lines) != 0:
 for line in lines:
 line_counter += 1
 for char in line:
 print(char, end='')
 character_counter += 1
 lines = stream.readlines(10)
 stream.close()
 print("\n\nCaracteres en el archivo:", character_counter)
 print("Líneas en el archivo: ", line_counter)
except IOError as e:
 print("Se produjo un error de E/S:", strerror(e.errno))

Lo hemos modificado para mostrarte como usar readlines().

Hemos decidido usar un búfer de 15 bytes de longitud. No pienses que es una recomendación.

Hemos utilizado ese valor para evitar la situación en la que la primera invocación de readlines() consuma
todo el archivo.

Queremos que el método se vea obligado a trabajar más duro y que demuestre sus capacidades.

Existen dos bucles anidados en el código: el exterior emplea el resultado de readlines() para iterar a través
de él, mientras que el interno imprime las líneas carácter por carácter.

El último ejemplo que queremos presentar muestra un rasgo muy interesante del objeto devuelto por la función
open() en modo de texto.

Creemos que puede sorprenderte: el objeto es una instancia de la clase iterable.

¿Extraño? De ninguna manera. ¿Usable? Si, por supuesto.

El protocolo de iteración definido para el objeto del archivo es muy simple: su método __next__ solo devuelve la
siguiente línea leída del archivo.

Además, puedes esperar que el objeto invoque automáticamente a close() cuando cualquiera de las lecturas
del archivo lleguen al final del archivo.

Mira el editor y ve cuan simple y claro se ha vuelto el código.

from os import strerror

try:
 character_counter = line_counter = 0
 for line in open('text.txt', 'rt'):
 line_counter += 1
 for char in line:
 print(char, end='')
 character_counter += 1
 print("\n\nCaracteres en el archivo: ", character_counter)
 print("Líneas en el archivo: ", line_counter)
except IOError as e:

Last
update:
07/07/2022
14:11

info:cursos:netacad:python:pe2m4:archivos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:archivos?rev=1657228261

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 20:19

 print("Se produjo un error de E/S:", strerror(e.errno))

Manejando archivos de texto: write()

Escribir archivos de texto parece ser más simple, ya que hay un método que puede usarse para realizar dicha
tarea.

El método se llama write() y espera solo un argumento: una cadena que se transferirá a un archivo abierto
(no lo olvides), el modo de apertura debe reflejar la forma en que se transfieren los datos, escribir en un
archivo abierto en modo de lectura no tendrá éxito).

No se agrega carácter de nueva línea al argumento de write(), por lo que debes agregarlo tu mismo si deseas
que el archivo se complete con varias líneas.

El ejemplo en el editor muestra un código muy simple que crea un archivo llamado newtext.txt (nota: el modo
de apertura w asegura que el archivo se creará desde cero, incluso si existe y contiene datos) y luego coloca
diez líneas en él.

from os import strerror

try:
 file = open('newtext.txt', 'wt') # Un nuevo archivo (newtext.txt) es creado.
 for i in range(10):
 s = "línea #" + str(i+1) + "\n"
 for char in s:
 file.write(char)
 file.close()
except IOError as e:
 print("Se produjo un error de E/S:", strerror(e.errno))

La cadena que se grabará consta de la palabra línea, seguida del número de línea. Hemos decidido escribir el
contenido de la cadena carácter por carácter (esto lo hace el bucle interno for) pero no estás obligado a hacerlo
de esta manera.

Solo queríamos mostrarte que write() puede operar con caracteres individuales.

El código crea un archivo con el siguiente texto:

línea #1
línea #2
línea #3
línea #4
línea #5
línea #6
línea #7
línea #8
línea #9
línea #10

¿Puedes imprimir el contenido del archivo en la consola?

Te alentamos a que pruebes el comportamiento del método write() localmente en tu máquina.

14/02/2026 20:19 19/24 Módulo 4 (Intermedio): Archivos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Mira el ejemplo en el editor. Hemos modificado el código anterior para escribir líneas enteras en el archivo de
texto.

from os import strerror

try:
 file = open('newtext.txt', 'wt')
 for i in range(10):
 file.write("línea #" + str(i+1) + "\n")
 file.close()
except IOError as e:
 print("Se produjo un error de E/S:", strerror(e.errno))

El contenido del archivo recién creado es el mismo.

Nota: puedes usar el mismo método para escribir en el stream stderr, pero no intentes abrirlo, ya que siempre
está abierto implícitamente.

Por ejemplo, si deseas enviar un mensaje de tipo cadena a stderr para distinguirlo de la salida normal del
programa, puede verse así:

import sys
sys.stderr.write("Mensaje de Error")

¿Qué es un bytearray?

Antes de comenzar a hablar sobre archivos binarios, tenemos que informarte sobre una de las clases
especializadas que Python usa para almacenar datos amorfos.

Los datos amorfos son datos que no tienen forma específica, son solo una serie de bytes.

Esto no significa que estos bytes no puedan tener su propio significado o que no puedan representar ningún
objeto útil, por ejemplo, gráficos de mapa de bits.

The most important aspect of this is that in the place where we have contact with the data, we are not able to,
or simply don't want to, know anything about it.

Los datos amorfos no pueden almacenarse utilizando ninguno de los medios presentados anteriormente: no son
cadenas ni listas.

Debe haber un contenedor especial capaz de manejar dichos datos.

Python tiene más de un contenedor, uno de ellos es una clase especializada llamada bytearray, como su
nombre indica, es un arreglo que contiene bytes (amorfos).

Si deseas tener dicho contenedor, por ejemplo, para leer una imagen de mapa de bits y procesarla de alguna
manera, debes crearlo explícitamente, utilizando uno de los constructores disponibles.

Observa:

data = bytearray(10)

Tal invocación crea un objeto bytearray capaz de almacenar diez bytes.

Nota: dicho constructor llena todo el arreglo con ceros.

Last
update:
07/07/2022
14:11

info:cursos:netacad:python:pe2m4:archivos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:archivos?rev=1657228261

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 20:19

Bytearrays se asemejan a listas en muchos aspectos. Por ejemplo, son mutables, son susceptibles a la función
len(), y puedes acceder a cualquiera de sus elementos usando indexación convencional.

Existe una limitación importante: no debes establecer ningún elemento del arreglo de bytes con un
valor que no sea un entero (violar esta regla causará una excepción TypeError) y tampoco está permitido
asignar un valor fuera del rango de 0 a 255 (a menos que quieras provocar una excepción ValueError).

Puedes tratar cualquier elemento del arreglo de bytes como un valor entero, al igual que en el ejemplo
en el editor.

data = bytearray(10)

for i in range(len(data)):
 data[i] = 10 - i

for b in data:
 print(hex(b))

Nota: hemos utilizado dos métodos para iterar el arreglo de bytes, y hemos utilizado la función hex() para ver
los elementos impresos como valores hexadecimales.

Ahora te vamos a mostrar como escribir un arreglo de bytes en un archivo binario, como no queremos
guardar su representación legible, queremos escribir una copia uno a uno del contenido de la memoria física,
byte a byte.

Entonces, ¿cómo escribimos un arreglo de bytes en un archivo binario?

Observa el código en el editor. Analicémoslo:

Primero, inicializamos bytearray con valores a partir de 10; si deseas que el contenido del archivo sea
claramente legible, reemplaza el 10con algo como ord('a'), esto producirá bytes que contienen valores
correspondientes a la parte alfabética del código ASCII (no pienses que harás que el archivo sea un
archivo de texto; sigue siendo binario, ya que se creó con un indicador: wb).
Después, creamos el archivo usando la función open(), la única diferencia en comparación con las
variantes anteriores es que el modo de apertura contiene el indicador b.
El método write() toma su argumento (bytearray) y lo envía (como un todo) al archivo.
El stream se cierra de forma rutinaria.

El método write() devuelve la cantidad de bytes escritos correctamente.

Si los valores difieren de la longitud de los argumentos del método, puede significar que hay algunos errores de
escritura.

En este caso, no hemos utilizado el resultado; esto puede no ser apropiado en todos los casos.

Intenta ejecutar el código y analiza el contenido del archivo recién creado.

from os import strerror

data = bytearray(10)

for i in range(len(data)):
 data[i] = 10 + i

try:
 binary_file = open('file.bin', 'wb')

14/02/2026 20:19 21/24 Módulo 4 (Intermedio): Archivos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

 binary_file.write(data)
 binary_file.close()
except IOError as e:
 print("Se produjo un error de E/S:", strerror(e.errno))

Ingresa aquí el código que lee los bytes del stream.

Lo vas a usar en el siguiente paso.

Cómo leer bytes de un stream

La lectura de un archivo binario requiere el uso de un método especializado llamado readinto(), ya que el
método no crea un nuevo objeto del arreglo de bytes, sino que llena uno creado previamente con los valores
tomados del archivo binario.

Nota:

El método devuelve el número de bytes leídos con éxito.
El método intenta llenar todo el espacio disponible dentro de su argumento; si existen más datos en el
archivo que espacio en el argumento, la operación de lectura se detendrá antes del final del archivo; el
resultado del método puede indicar que el arreglo de bytes solo se ha llenado de manera fragmentaria (el
resultado también lo mostrará y la parte del arreglo que no está siendo utilizada por los contenidos
recién leídos permanece intacta).

Observa el código a continuación:

from os import strerror

data = bytearray(10)

try:
 binary_file = open('file.bin', 'rb')
 binary_file.readinto(data)
 binary_file.close()

 for b in data:
 print(hex(b), end=' ')
except IOError as e:
 print("Se produjo un error de E/S:", strerror(e.errno))

Analicémoslo:

Primero, abrimos el archivo (el que se creó usando el código anterior) con el modo descrito como rb.
Luego, leemos su contenido en el arreglo de bytes llamado data, con un tamaño de diez bytes.
Finalmente, imprimimos el contenido del arreglo de bytes: ¿Son los mismos que esperabas?

Ejecuta el código y verifica si funciona.

Cómo leer bytes de un stream

Se ofrece una forma alternativa de leer el contenido de un archivo binario mediante el método denominado
read().

Last
update:
07/07/2022
14:11

info:cursos:netacad:python:pe2m4:archivos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:archivos?rev=1657228261

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 20:19

Invocado sin argumentos, intenta leer todo el contenido del archivo en la memoria, haciéndolo parte de
un objeto recién creado de la clase bytes.

Esta clase tiene algunas similitudes con bytearray, con la excepción de una diferencia significativa: es
immutable.

Afortunadamente, no hay obstáculos para crear un arreglo de bytes tomando su valor inicial directamente del
objeto de bytes, como aquí:

from os import strerror

try:
 binary_file = open('file.bin', 'rb')
 data = bytearray(binary_file.read())
 binary_file.close()

 for b in data:
 print(hex(b), end=' ')

except IOError as e:
 print("Se produjo un error de E/S:", strerror(e.errno))

Ten cuidado: no utilices este tipo de lectura si no estás seguro de que el contenido del archivo se
ajuste a la memoria disponible.

from os import strerror

data = bytearray(10)

for i in range(len(data)):
 data[i] = 10 + i

try:
 binary_file = open('file.bin', 'wb')
 binary_file.write(data)
 binary_file.close()
except IOError as e:
 print("Se produjo un error de E/S:", strerror(e.errno))

Ingresa aquí el código que lee los bytes del stream.

Si el método read() se invoca con un argumento, se especifica el número máximo de bytes a leer.

El método intenta leer la cantidad deseada de bytes del archivo, y la longitud del objeto devuelto puede usarse
para determinar la cantidad de bytes realmente leídos.

Puedes usar el método como aquí:

try:
 binary_file = open('file.bin', 'rb')
 data = bytearray(binary_file.read(5))
 binary_file.close()

 for b in data:
 print(hex(b), end=' ')

14/02/2026 20:19 23/24 Módulo 4 (Intermedio): Archivos

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

except IOError as e:
 print("Se produjo un error de E/S:", strerror(e.errno))

Nota: los primeros cinco bytes del archivo han sido leídos por el código; los siguientes cinco todavía están
esperando ser procesados.

Copiando archivos: una herramienta simple y funcional

Ahora vas a juntar todo este nuevo conocimiento, agregarle algunos elementos nuevos y usarlo para escribir un
código real que pueda copiar el contenido de un archivo.

Por supuesto, el propósito no es crear un reemplazo para los comandos como copy de (MS Windows) o cp de
(Unix/Linux) pero para ver una forma posible de crear una herramienta de trabajo, incluso si nadie quiere
usarla.

from os import strerror

source_file_name = input("Ingresa el nombre del archivo fuente: ")
try:
 source_file = open(source_file_name, 'rb')
except IOError as e:
 print("No se puede abrir archivo fuente: ", strerror(e.errno))
 exit(e.errno)

destination_file_name = input("Ingresa el nombre del archivo destino: ")
try:
 destination_file = open(destination_file_name, 'wb')
except Exception as e:
 print("No se puede crear el archivo de destino:", strerror(e.errno))
 source_file.close()
 exit(e.errno)

buffer = bytearray(65536)
total = 0
try:
 readin = source_file.readinto(buffer)
 while readin > 0:
 written = destination_file.write(buffer[:readin])
 total += written
 readin = source_file.readinto(buffer)
except IOError as e:
 print("No se puede crear el archivo de destino: ", strerror(e.errno))
 exit(e.errno)
print(total,'byte(s) escritos con éxito')
source_file.close()
destination_file.close()

Analicémoslo:

Las líneas 3 a la 8: solicitan al usuario el nombre del archivo a copiar e intentan abrirlo para leerlo; se
termina la ejecución del programa si falla la apertura; nota: emplea la función exit() para detener la

Last
update:
07/07/2022
14:11

info:cursos:netacad:python:pe2m4:archivos https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:archivos?rev=1657228261

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 20:19

ejecución del programa y pasar el código de finalización al sistema operativo; cualquier código de
finalización que no sea 0 significa que el programa ha encontrado algunos problemas; se debe utilizar el
valor errno para especificar la naturaleza del problema.
Las líneas 10 a la 16: repiten casi la misma acción, pero esta vez para el archivo de salida.
La línea 18: prepara una parte de memoria para transferir datos del archivo fuente al destino; Tal área de
transferencia a menudo se llama un búfer, de ahí el nombre de la variable; el tamaño del búfer es
arbitrario; en este caso, decidimos usar 64 kilobytes; técnicamente, un búfer más grande es más rápido
al copiar elementos, ya que un búfer más grande significa menos operaciones de E/S; en realidad,
siempre hay un límite, cuyo cruce no genera más ventajas; pruébalo tú mismo si quieres.
Línea 19: cuenta los bytes copiados: este es el contador y su valor inicial.
Línea 21: intenta llenar el búfer por primera vez.
Línea 22: mientras se obtenga un número de bytes distinto a cero, repite las mismas acciones.
Línea 22: escribe el contenido del búfer en el archivo de salida (nota: hemos usado un segmento para
limitar la cantidad de bytes que se escriben, ya que write() siempre prefiere escribir todo el búfer).
Línea 24: actualiza el contador.
Línea 25: lee el siguiente fragmento de archivo.
Las líneas 30 a la 32: limpieza final: el trabajo está hecho.

Puntos Clave

1.Para leer el contenido de un archivo, se pueden utilizar los siguientes métodos:

read(number): lee elnúmero de carácteres/bytes del archivo y los retorna como una cadena, es capaz de
leer todo el archivo a la vez.
readline(): lee una sola línea del archivo de texto.
readlines(number): lee el número de líneas del archivo de texto; es capaz de leer todas las líneas a la
vez.
readinto(bytearray): lee los bytes del archivo y llena el bytearray con ellos.

2. Para escribir contenido nuevo en un archivo, se pueden utilizar los siguientes métodos:

write(string): escribe una cadena a un archivo de texto.
write(bytearray): escribe todos los bytes de un bytearray a un archivo.

3. El método open() devuelve un objeto iterable que se puede usar para recorrer todas las líneas del archivo
dentro de un bucle for. Por ejemplo:

for line in open("file", "rt"):
 print(line, end='')

El código copia el contenido del archivo a la consola, línea por línea. Nota: el stream se cierra
automáticamente cuando llega al final del archivo.

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:archivos?rev=1657228261

Last update: 07/07/2022 14:11

https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:archivos?rev=1657228261

	Módulo 4 (Intermedio): Archivos
	Accediendo archivos desde código en Python
	Nombres de archivos
	Archivos: streams
	Manejo de archivos
	Abriendo los streams
	Modos para abrir los streams
	Seleccionando modo de texto y modo binario
	Abriendo el stream por primera vez
	Streams pre-abiertos
	Cerrando streams
	Diagnosticando problemas con los streams
	Puntos Clave
	Procesamiento de archivos de texto (incompleto)
	Procesando archivos de texto: readline()
	Procesando archivos de texto: readlines()
	Manejando archivos de texto: write()
	¿Qué es un bytearray?
	Cómo leer bytes de un stream
	Cómo leer bytes de un stream
	Copiando archivos: una herramienta simple y funcional
	Puntos Clave

