15/12/2025 00:50 1/6 Mddulo 4 (Intermedio): Biblioteca os

Mddulo 4 (Intermedio): Biblioteca os

Introduccion al médulo os

En esta seccién, aprenderds sobre un médulo llamado os, que te permite interactuar con tu sistema
operativo usando Python.

Proporciona funciones que estan disponibles en sistemas Unix y/o Windows. Si estas familiarizado con la consola
de comandos, veras que algunas funciones dan los mismos resultados que los comandos disponibles en los
sistemas operativos.

Un buen ejemplo de esto es la funcién mkdir, que te permite crear un directorio como el comando mkdir en Unix
y Windows. Si no conoces este comando, no te preocupes.

Pronto tendras la oportunidad de aprender las funciones del médulo os, para realizar operaciones en archivos y
directorios junto con los comandos correspondientes.

Ademas de las operaciones de archivos y directorios, el médulo os te permite:

¢ Obtener informacién sobre el sistema operativo.
e Manejar procesos.
¢ QOperar en streams de E/S usando descriptores de archivos.

En un momento, verds cémo obtener informacidn basica sobre tu sistema operativo, aunque la administracién
de procesos y el trabajo con descriptores de archivos no se discutirdn aqui, porque estos son temas mas
avanzados que requieren conocimiento de los mecanismos del sistema operativo.

Obtener informacion sobre el sistema operativo

Antes de crear tu primera estructura de directorios, veras cdmo puedes obtener informacién sobre el sistema
operativo actual. Esto es realmente facil porque el mdédulo os proporciona una funcién llamada uname, que
devuelve un objeto que contiene los siguientes atributos:

¢ systemname: almacena el nombre del sistema operativo.
nodename: almacena el nombre de la maquina en la red.

release: almacena el release (actualizacién) del sistema operativo.
version: almacena la version del sistema operativo.

¢ machine: almacena el identificador de hardware, por ejemplo, x86_64.

Veamos cdmo es en la practica:

0S
0S.uname

Resultado:

posix.uname result(sysname='Linux', nodename='192d19f04766', release='4.4.0-164-
generic', version='#192-Ubuntu SMP Fri Sep 13 12:02:50 UTC 2019', machine='x86 64"')

Como puedes ver, la funcién uname devuelve un objeto que contiene informacién sobre el sistema operativo. El
cédigo anterior se ejecuté en Ubuntu 16.04.6 LTS, asi que no te sorprendas si obtienes un resultado diferente,
porque depende de tu sistema operativo.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last
update:
07/07/2022
07:55

info:cursos:netacad:python:pe2m4:biblioteca:os https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:biblioteca:os

Desafortunadamente, la funcién uname solo funciona en algunos sistemas Unix. Si usas Windows, puede usar la
funcién uname en el médulo plataform, que devuelve un resultado similar.

El mddulo os te permite distinguir rdpidamente el sistema operativo mediante el atributo name, que soporta
uno de los siguientes nombres:

* posix: obtendras este nombre si usas Unix.
e nt: obtendras este nombre si usas Windows.
¢ java: obtendras este nombre si tu cédigo estd escrito en Jython.

Para Ubuntu 16.04.6 LTS, el atributo name devuelve el nombre posix:

0sS
0S.name

Resultado:
posix

NOTA: En los sistemas Unix, hay un comando llamado uname que devuelve la misma informacién (si lo ejecutas
con la opcidn -a) que la funcién uname.

Creando directorios en Python

El médulo os proporciona una funcién llamada mkdir, la cual, como el comando mkdir en Unix y Windows, te
permite crear un directorio. La funcién mkdir requiere una ruta que puede ser relativa o absoluta. Recordemos
cémo se ven ambas rutas en la practica:

e my first_directory: esta es una ruta relativa que creara el directorio my first_directory en el directorio
de trabajo actual.

e ./my first_directory: esta es una ruta relativa que apunta explicitamente al directorio de trabajo actual.
Tiene el mismo efecto que la ruta anterior.

¢ ../my_first_directory: esta es una ruta relativa que creara el directorio my_first directory en el
directorio superior del directorio de trabajo actual.

e /python/my _first_directory: esta es una ruta absoluta que creara el directorio my first_directory, que a
su vez estd en el directorio raiz de python.

Observa el cédigo en el editor. Muestra un ejemplo de cémo crear el directorio my first_directory usando una
ruta relativa. Esta es la variante mas simple de la ruta relativa, que consiste en pasar solo el nombre del
directorio.

Si pruebas tu cédigo aqui, generara el directorio recién creado ['my_first_directory'](y todo el contenido del
catalogo de trabajo actual).

La funcién mkdir crea un directorio en la ruta especificada. Ten en cuenta que ejecutar el programa dos veces
generara un FileExistsError.

Esto significa que no podemos crear un directorio si ya existe. Ademas del argumento de la ruta, la funcién
mkdir puede tomar opcionalmente el argumento mode, que especifica los permisos del directorio. Sin embargo,
en algunos sistemas, el argumento mode se ignora.

Para cambiar los permisos del directorio, recomendamos la funcién chmod, que funciona de manera similar al
comando chmod en sistemas Unix. Puedes encontrar mas informacién al respecto en la documentacion.

https://miguelangel.torresegea.es/wiki/ Printed on 15/12/2025 00:50



15/12/2025 00:50 3/6 Mddulo 4 (Intermedio): Biblioteca os

En el ejemplo anterior, se usa otra funcién proporcionada por el médulo os llamada listdir. La funcién listdir
devuelve una lista que contiene los nombres de los archivos y directorios que se encuentran en la ruta pasada
como argumento.

Si no se le pasa ningln argumento, se utilizara el directorio de trabajo actual (como en el ejemplo anterior). Es
importante que el resultado de la funcién listdir omita las entradas '.' y '..", que se muestran, por ejemplo,
cuando se usa el comando Is -a en sistemas Unix.

NOTA: Tanto en Windows como en Unix, hay un comando llamado mkdir, que requiere una ruta de directorio. El
equivalente del cédigo anterior que crea el directorio my first_directory es el comando mkdir my_first directory.

Creacion recursiva de directorios

La funcién mkdir es muy Uutil, pero ;qué sucede si necesitas crear otro directorio dentro del directorio que
acabas de crear? Por supuesto, puedes ir al directorio creado y crear otro directorio dentro de él, pero
afortunadamente el mddulo os proporciona una funcién llamada makedirs, que facilita esta tarea.

La funcién makedirs permite la creacién recursiva de directorios, lo que significa que se crearan todos los
directorios de la ruta.

0sS

os.makedirs("my first directory/my second directory"
os.chdir("my first directory"
os.listdir

El cédigo deberia producir el siguiente resultado:
['my second directory']

El cédigo crea dos directorios. El primero de ellos se crea en el directorio de trabajo actual, mientras que el
segundo en el directorio my _first_directory.

No tienes que ir al directorio my first_directory para crear el directorio my_second_directory, porque la funcién
makedirs hace esto por ti. En el ejemplo anterior, vamos al directorio my _first directory para mostrar que el
comando makedirs crea el subdirectorio my_second_directory.

Para moverte entre directorios, puedes usar una funcién llamada chdir, que cambia el directorio de trabajo
actual a la ruta especificada. Como argumento, toma cualquier ruta relativa o absoluta. En nuestro ejemplo, le
pasamos el nombre del primer directorio.

NOTA: El equivalente de la funcién makedirs en sistemas Unix es el comando mkdir con el indicador -p, mientras
que en Windows, simplemente el comando mkdir con la ruta:

¢ Sistemas tipo Unix:
mkdir -p my first directory/my second directory
¢ Windows:

mkdir my first directory/my second directory

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last
update:
07/07/2022
07:55

¢Donde estoy ahora?

info:cursos:netacad:python:pe2m4:biblioteca:os https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:biblioteca:os

Ya sabes como crear directorios y cdmo moverte entre ellos. A veces, cuando tienes una estructura de
directorio muy grande en la que navegas, es posible que no sepas en qué directorio estds trabajando
actualmente.

Como probablemente habrdas adivinado, el médulo os proporciona una funcién que devuelve informacién sobre
el directorio de trabajo actual. Se llama getcwd.

0sS

os.makedirs("my first directory/my second directory"
os.chdir("my first directory"

0s.getcwd
os.chdir("my second directory"

0s.getcwd

Resultado:

.../my first directory
.../my first directory/my second directory

En el ejemplo, creamos el directorio my first_directory y el directorio my_second_directory dentro de él. En el
siguiente paso, cambiamos el directorio de trabajo actual al directorio my_first_directory y luego mostramos el
directorio de trabajo actual (primera linea del resultado).

A continuacién, vamos al directorio my_second_directory y nuevamente mostramos el directorio de trabajo
actual (segunda linea del resultado). Como puedes ver, la funcién getcwd devuelve la ruta absoluta a los
directorios.

NOTA: En sistemas tipo Unix, el equivalente de la funcién getcwd es el comando pwd, que imprime el nombre
del directorio de trabajo actual.

Eliminando directorios en Python

El médulo os también te permite eliminar directorios. Te da la opcién de borrar un solo directorio o un directorio
con sus subdirectorios. Para eliminar un solo directorio, puedes usar una funcién llamada rmdir, que toma la
ruta como argumento.

0sS

os.mkdir("my first directory"
os.listdir

os.rmdir("my first directory"
os.listdir

El ejemplo anterior es realmente simple. Primero, se crea el directorio my _first_directory y luego se elimina
usando la funcién rmdir. La funcidn listdir se utiliza como prueba de que el directorio se ha eliminado
correctamente. En este caso, devuelve una lista vacia. Al eliminar un directorio, asegurate de que exista y esté
vacio; de lo contrario, se generara una excepcion.

https://miguelangel.torresegea.es/wiki/ Printed on 15/12/2025 00:50



15/12/2025 00:50 5/6 Mddulo 4 (Intermedio): Biblioteca os

Para eliminar un directorio y sus subdirectorios, puedes utilizar la funciéon removedirs, que requiere que se
especifique una ruta que contenga todos los directorios que deben eliminarse:

0s

os.makedirs("my first directory/my second directory"
os.removedirs("my first directory/my second directory"
os.listdir

Al igual que con la funcién rmdir, si uno de los directorios no existe o no esta vacio, se generard una excepcion.
NOTA: Tanto en Windows como en Unix, hay un comando llamado rmdir, que, al igual que la funcién rmdir,

elimina directorios. Ademads, ambos sistemas tienen comandos para eliminar un directorio y su contenido. En
Unix, este es el comando rm con el indicador -r.

La funcidon system()
Todas las funciones presentadas en esta parte del curso pueden ser reemplazadas por una funcién llamada
system, que ejecuta un comando que se le pasa como una cadena.

La funcién system esté disponible tanto en Windows como en Unix. Dependiendo del sistema, devuelve un
resultado diferente.

En Windows, devuelve el valor devuelto por el shell después de ejecutar el comando dado, mientras que en
Unix, devuelve el estado de salida del proceso.

0sS

returned value = os.system("mkdir my first directory"
returned value

Resultado:

0

El ejemplo anterior funcionara tanto en Windows como en Unix. En nuestro caso, recibimos el estado de salida
0, que indica éxito en los sistemas Unix.

Esto significa que se ha creado el directorio my_first_directory. Como parte del ejercicio, intenta enumerar el
contenido del directorio donde se cred el directorio my_first_directory.

Puntos Claves

1. La funcién uname devuelve un objeto que contiene informacién sobre el sistema operativo actual. El objeto
tiene los siguientes atributos:

systemname (almacena el nombre del sistema operativo)

nodename (almacena el nombre de la maquina en la red)

release (almacena el release (actualizacién) del sistema operativo)

e version (almacena la versién del sistema operativo)

machine (almacena el identificador de hardware, por ejemplo, x86_64)

2. El atributo name disponible en el médulo os te permite distinguir el sistema operativo. Devuelve uno de los

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last
update:
07/07/2022
07:55

info:cursos:netacad:python:pe2m4:biblioteca:os https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:biblioteca:os

siguientes tres valores:

e posix (obtendrds este nombre si usas Unix)
¢ nt (obtendrds este nombre si usas Windows)
 java (obtendra este nombre si tu cddigo esta escrito en algo como Jython)

3. La funcién mkdir crea un directorio en la ruta pasada como argumento. La ruta puede ser relativa o absoluta,
por ejemplo:

0s

os.mkdir("hello") # la ruta relativa
os.mkdir("/home/python/hello") # la ruta absoluta

Nota: Si el directorio existe, una excepcidn FileExistsError sera generada. Ademas de la funciéon mkdir, el
mddulo os proporciona la funcién makedirs, que te permite crear recursivamente todos los directorios en una
ruta.

4. El resultado de la funcién listdir () es una lista que contiene los nombres de los archivos y directorios que
se encuentran en la ruta pasada como argumento.

Es importante recordar que la funcién listdir() omite las entradas '.' y '..", que se muestran, por ejemplo,
cuando se utiliza el comando Is -a en sistemas Unix. Si no se pasa la ruta, el resultado se devolvera para el
directorio de trabajo actual.

5. Para moverte entre directorios, puedes usar una funcién llamada chdir (), que cambia el directorio de
trabajo actual a la ruta especificada. Como argumento, toma cualquier ruta relativa o absoluta.

Si deseas averiguar cual es el directorio de trabajo actual, puedes usar la funcién getcwd (), que devuelve la
ruta actual.

6. Para eliminar un directorio, puedes usar la funcién rmdir (), pero para eliminar un directorio y sus
subdirectorios, emplea la funcién removedirs().

7. Tanto en Unix como en Windows, puedes usar la funcién system, que ejecuta el comando que se le pasa
como cadena, por ejemplo:

0s
returned value = os.system("mkdir hello"

La funcion system en Windows devuelve el valor devuelto por el shell después de ejecutar el comando dado,
mientras que en Unix devuelve el estado de salida del proceso.

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:biblioteca:os

Last update: 07/07/2022 07:55

https://miguelangel.torresegea.es/wiki/ Printed on 15/12/2025 00:50


https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:biblioteca:os

	Módulo 4 (Intermedio): Biblioteca os
	Introducción al módulo os
	Obtener información sobre el sistema operativo
	Creando directorios en Python
	Creación recursiva de directorios
	¿Dónde estoy ahora?
	Eliminando directorios en Python
	La función system()
	Puntos Claves


