
14/02/2026 23:14 1/10 Módulo 4 (Intermedio): Generadores

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Módulo 4 (Intermedio): Generadores

Generadores, donde encontrarlos

Generador - ¿Con qué asocias esta palabra? Quizás se refiere a algún dispositivo electrónico. O tal vez se
refiere a una máquina pesada diseñada para producir energía eléctrica u otra cosa.

Un generador de Python es un fragmento de código especializado capaz de producir una serie de
valores y controlar el proceso de iteración. Esta es la razón por la cual los generadores a menudo se
llaman iteradores, y aunque hay quienes pueden encontrar una diferencia entre estos dos, aquí los trataremos
como uno mismo.

Puede que no te hayas dado cuenta, pero te has topado con generadores muchas, muchas veces antes. Echa un
vistazo al fragmento de código:

for i in range(5):
 print(i)

La función range() es un generador, la cual también es un iterador.

¿Cuál es la diferencia?

Una función devuelve un valor bien definido, el cual, puede ser el resultado de una evaluación compleja, por
ejemplo, de un polinomio, y se invoca una vez, solo una vez.

Un generador devuelve una serie de valores, y en general, se invoca (implícitamente) más de una vez.

En el ejemplo, el generador range() se invoca seis veces, proporcionando cinco valores de cero a cuatro.

El proceso anterior es completamente transparente. Vamos a arrojar algo de luz sobre el. Vamos a mostrarte el
protocolo iterador.

El protocolo iterador es una forma en que un objeto debe comportarse para ajustarse a las reglas
impuestas por el contexto de las sentencias for e in. Un objeto conforme al protocolo iterador se llama
iterador.

Un iterador debe proporcionar dos métodos:

__iter__() el cual debe devolver el objeto en sí y que se invoca una vez (es necesario para que
Python inicie con éxito la iteración).
__next__() el cual debe devolver el siguiente valor (primero, segundo, etc.) de la serie deseada:
será invocado por las sentencias for/in para pasar a la siguiente iteración; si no hay más valores a
proporcionar, el método deberá generar la excepción StopIteration.

¿Suena extraño? De ningúna manera:

class Fib:
 def __init__(self, nn):
 print("__init__")
 self.__n = nn
 self.__i = 0
 self.__p1 = self.__p2 = 1

 def __iter__(self):

Last
update:
06/07/2022
08:01

info:cursos:netacad:python:pe2m4:generadores https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:generadores?rev=1657119665

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 23:14

 print("__iter__")
 return self

 def __next__(self):
 print("__next__")
 self.__i += 1
 if self.__i > self.__n:
 raise StopIteration
 if self.__i in [1, 2]:
 return 1
 ret = self.__p1 + self.__p2
 self.__p1, self.__p2 = self.__p2, ret
 return ret

for i in Fib(10):
 print(i)

Hemos creado una clase capaz de iterar a través de los primeros n valores (donde n es un parámetro del
constructor) de los números de Fibonacci.

Permítenos recordarte: los números de Fibonacci(Fibi) se definen de la siguiente manera:

Fib1

1

Fib2

1

Fibi

Fib_i-1 + Fib_i-2

En otras palabras:

Los primeros dos números de la serie Fibonacci son 1.
Cualquier otro número de Fibonacci es la suma de los dos anteriores (por ejemplo, Fib3 = 2, Fib4 = 3,
Fib5 = 5, y así sucesivamente).

Vamos a ver el código:

Las líneas 2 a 6: el constructor de la clase imprime un mensaje (lo usaremos para rastrear el
comportamiento de la clase), se preparan algunas variables: (__n para almacenar el límite de la serie, __i

14/02/2026 23:14 3/10 Módulo 4 (Intermedio): Generadores

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

para rastrear el número actual de la serie Fibonacci, y __p1 junto con __p2 para guardar los dos números
anteriores).
Las líneas 8 a 10: el método __iter__ está obligado a devolver el objeto iterador en sí mismo; su propósito
puede ser un poco ambiguo aquí, pero no hay misterio; trata de imaginar un objeto que no sea un
iterador (por ejemplo, es una colección de algunas entidades), pero uno de sus componentes es un
iterador capaz de escanear la colección; el método __iter__ debe extraer el iterador y confiarle la
ejecución del protocolo de iteración; como puedes ver, el método comienza su acción imprimiendo
un mensaje.
Las líneas 12 a 21: el método __next__ es responsable de crear la secuencia; es algo largo, pero esto
debería hacerlo más legible; primero, imprime un mensaje, luego actualiza el número de valores
deseados y, si llega al final de la secuencia, el método interrumpe la iteración al generar la excepción
StopIteration; el resto del código es simple y refleja con precisión la definición que te mostramos
anteriormente.
Las líneas 24 y 25 hacen uso del iterador.

El código produce el siguiente resultado:

__init__
__iter__
__next__
1
__next__
1
__next__
2
__next__
3
__next__
5
__next__
8
__next__
13
__next__
21
__next__
34
__next__
55
__next__

Observa:

El objeto iterador se instancia primero.
Después, Python invoca el método __iter__ para acceder al iterador real.
El método __next__ se invoca once veces: las primeras diez veces produce valores útiles, mientras que la
ultima finaliza la iteración.

El ejemplo muestra una solución donde el objeto iterador es parte de una clase más compleja.

class Fib:
 def __init__(self, nn):
 self.__n = nn
 self.__i = 0
 self.__p1 = self.__p2 = 1

Last
update:
06/07/2022
08:01

info:cursos:netacad:python:pe2m4:generadores https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:generadores?rev=1657119665

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 23:14

 def __iter__(self):
 print("Fib iter")
 return self

 def __next__(self):
 self.__i += 1
 if self.__i > self.__n:
 raise StopIteration
 if self.__i in [1, 2]:
 return 1
 ret = self.__p1 + self.__p2
 self.__p1, self.__p2 = self.__p2, ret
 return ret

class Class:
 def __init__(self, n):
 self.__iter = Fib(n)

 def __iter__(self):
 print("Class iter")
 return self.__iter

object = Class(8)

for i in object:
 print(i)

El código no es sofisticado, pero presenta el concepto de una manera clara.

Echa un vistazo al código en el editor.

Hemos colocado el iterador Fib dentro de otra clase (podemos decir que lo hemos compuesto dentro de la clase
Class). Se instancia junto con el objeto de Class.

El objeto de la clase se puede usar como un iterador cuando (y solo cuando) responde positivamente a la
invocación __iter__ - esta clase puede hacerlo, y si se invoca de esta manera, proporciona un objeto capaz de
obedecer el protocolo de iteración.

Es por eso que la salida del código es la misma que anteriormente, aunque el objeto de la clase Fib no se usa
explícitamente dentro del contexto del bucle for.

Class iter
1
1
2
3
5
8
13
21

14/02/2026 23:14 5/10 Módulo 4 (Intermedio): Generadores

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

La sentencia yield

El protocolo iterador no es difícil de entender y usar, pero también es indiscutible que el protocolo es
bastante inconveniente.

La principal molestia que tiene es que necesita guardar el estado de la iteración en las invocaciones
subsecuentes de __iter__.

Por ejemplo, el iterador Fib se ve obligado a almacenar con precisión el lugar en el que se detuvo la última
invocación (es decir, el número evaluado y los valores de los dos elementos anteriores). Esto hace que el código
sea más grande y menos comprensible.

Es por eso que Python ofrece una forma mucho más efectiva, conveniente y elegante de escribir iteradores.

El concepto se basa fundamentalmente en un mecanismo muy específico proporcionado por la palabra clave
reservada yield.

Se puede ver a la palabra clave reservada yield como un hermano más inteligente de la sentencia return, con
una diferencia esencial.

Echa un vistazo a esta función:

def fun(n):
 for i in range(n):
 return i

Se ve extraño, ¿no? Está claro que el bucle for no tiene posibilidad de terminar su primera ejecución, ya que el
return lo romperá irrevocablemente.

Además, invocar la función no cambiará nada: el bucle for comenzará desde cero y se romperá
inmediatamente.

Podemos decir que dicha función no puede guardar y restaurar su estado en invocaciones posteriores.

Esto también significa que una función como esta no se puede usar como generador.

Hemos reemplazado exactamente una palabra en el código, ¿puedes verla?

def fun(n):
 for i in range(n):
 yield i

Hemos puesto yield en lugar de return. Esta pequeña enmienda convierte la función en un generador, y el
ejecutar la sentencia yield tiene algunos efectos muy interesantes.

Primeramente, proporciona el valor de la expresión especificada después de la palabra clave reservada yield, al
igual que return, pero no pierde el estado de la función.

Todos los valores de las variables están congelados y esperan la próxima invocación, cuando se reanuda la
ejecución (no desde cero, como ocurre después de un return).

Hay una limitación importante: dicha función no debe invocarse explícitamente ya que no es una función;
es un objeto generador.

La invocación devolverá el identificador del objeto, no la serie que esperamos del generador.

Debido a las mismas razones, la función anterior (la que tiene el return) solo se puede invocar explícitamente y

Last
update:
06/07/2022
08:01

info:cursos:netacad:python:pe2m4:generadores https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:generadores?rev=1657119665

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 23:14

no se debe usar como generador.

Cómo construir un generador:

Permítenos mostrarte el nuevo generador en acción.

Así es como podemos usarlo:

def fun(n):
 for i in range(n):
 yield i

for v in fun(5):
 print(v)

¿Puedes adivinar la salida?

0
1
2
3
4

Cómo construir tu propio generador

¿Qué pasa si necesitas un generador para producir las primeras n potencias de 2 ?

Nada difícil. Solo mira el código en el editor.

def powers_of_2(n):
 power = 1
 for i in range(n):
 yield power
 power *= 2

for v in powers_of_2(8):
 print(v)

¿Puedes adivinar la salida? Ejecuta el código para verificar tus conjeturas.

Listas por comprensión

Los generadores también se pueden usar con listas por comprensión, justo como aquí:

def powers_of_2(n):
 power = 1
 for i in range(n):
 yield power

14/02/2026 23:14 7/10 Módulo 4 (Intermedio): Generadores

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

 power *= 2

t = [x for x in powers_of_2(5)]
print(t)

Ejecuta el ejemplo y verifica la salida.

La función list()

La función list() puede transformar una serie de invocaciones de generador subsequentes en una lista real:

def powers_of_2(n):
 power = 1
 for i in range(n):
 yield power
 power *= 2

t = list(powers_of_2(3))
print(t)

Nuevamente, intenta predecir el resultado y ejecuta el código para verificar tus predicciones.

El operador in

Además, el contexto creado por el operador in también te permite usar un generador.

El ejemplo muestra cómo hacerlo:

def powers_of_2(n):
 power = 1
 for i in range(n):
 yield power
 power *= 2

for i in range(20):
 if i in powers_of_2(4):
 print(i)

¿Cuál es la salida del código? Ejecuta el programa y verifica.

El generador de números Fibonacci

Ahora veamos un generador de números de la serie Fibonacci, asegurandonos que se vea mucho mejor que la
versión orientada a objetos basada en la implementación directa del protocolo iterador.

Aquí está:

def fibonacci(n):
 p = pp = 1

Last
update:
06/07/2022
08:01

info:cursos:netacad:python:pe2m4:generadores https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:generadores?rev=1657119665

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 23:14

 for i in range(n):
 if i in [0, 1]:
 yield 1
 else:
 n = p + pp
 pp, p = p, n
 yield n

fibs = list(fibonacci(10))
print(fibs)

Adivina la salida (una lista) producida por el generador y ejecuta el código para verificar si tenías razón.

Debes poder recordar las reglas que rigen la creación y el uso de un fenómeno de Python llamado listas por
comprensión: una forma simple de crear listas y sus contenidos.

list_1 = []

for ex in range(6):
 list_1.append(10 ** ex)

list_2 = [10 ** ex for ex in range(6)]

print(list_1)
print(list_2)

Existen dos partes dentro del código, ambas crean una lista que contiene algunas de las primeras potencias
naturales de diez.

La primer parte utiliza una forma rutinaria del bucle for, mientras que la segunda hace uso de listas por
comprensión y construye la lista en el momento, sin necesidad de un bucle o cualquier otro código.

Pareciera que la lista se crea dentro de sí misma; esto es falso, ya que Python tiene que realizar casi las mismas
operaciones que en la primera parte, pero el segundo formalismo es simplemente más elegante y le evita al
lector cualquier detalle innecesario.

El ejemplo genera dos líneas idénticas que contienen el siguiente texto:

[1, 10, 100, 1000, 10000, 100000]
[1, 10, 100, 1000, 10000, 100000]

Hay una sintaxis muy interesante que queremos mostrarte ahora. Su usabilidad no se limita a listas por
comprensión.

Es una expresión condicional: una forma de seleccionar uno de dos valores diferentes en función del
resultado de una expresión Booleana.

Observa:

expresión_uno if condición else expresión_dos

Puede parecer un poco sorprendente a primera vista, pero hay que tener en cuenta que no es una instrucción
condicional. Además, no es una instrucción en lo absoluto. Es un operador.

El valor que proporciona es expresión_uno cuando la condición es True (verdadero), y expresión_dos cuando sea

14/02/2026 23:14 9/10 Módulo 4 (Intermedio): Generadores

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

falso.

the_list = []

for x in range(10):
 the_list.append(1 if x % 2 == 0 else 0)

print(the_list)

El código llena una lista con unos y ceros, si el índice de un elemento particular es impar, el elemento se
establece a 0, y a 1 de lo contrario.

¿Simple? Quizás no a primera vista. ¿Elegante? Indiscutiblemente.

¿Se puede usar el mismo truco dentro de una comprensión de lista? Sí, por supuesto.

the_list = [1 if x % 2 == 0 else 0 for x in range(10)]

print(the_list)

Compacto y elegante: estas dos palabras vienen a la mente al mirar el código.

Entonces, ¿qué tienen en común, generadores y listas por comprensión? ¿Hay alguna conexión entre ellos? Si.
Una conexión algo suelta, pero inequívoca.

Solo un cambio puede convertir cualquier comprensión en un generador.

Listas por comprensión frente a generadores

Ahora observa el código a continuación y ve si puedes encontrar el detalle que convierte una comprensión de
lista en un generador:

the_list = [1 if x % 2 == 0 else 0 for x in range(10)]
the_generator = (1 if x % 2 == 0 else 0 for x in range(10))

for v in the_list:
 print(v, end=" ")
print()

for v in the_generator:
 print(v, end=" ")
print()

Son los paréntesis. Los corchetes hacen una comprensión, los paréntesis hacen un generador.

El código, cuando se ejecuta, produce dos líneas idénticas:

1 0 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0

¿Cómo puedes saber que la segunda asignación crea un generador, no una lista?

Hay algunas pruebas que podemos mostrarte. Aplica la función len() a ambas entidades.

len(the_list) dará como resultado 10. Claro y predecible. len(the_generator) generará una excepción,

Last
update:
06/07/2022
08:01

info:cursos:netacad:python:pe2m4:generadores https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:generadores?rev=1657119665

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 23:14

y verás el siguiente mensaje:

TypeError: object of type 'generator' has no len()

Por supuesto, guardar la lista o el generador no es necesario; puedes crearlos exactamente en el lugar donde
los necesites, justo como aquí:

for v in [1 if x % 2 == 0 else 0 for x in range(10)]:
 print(v, end=" ")
print()

for v in (1 if x % 2 == 0 else 0 for x in range(10)):
 print(v, end=" ")
print()

Nota: la misma apariencia de la salida no significa que ambos bucles funcionen de la misma manera. En el
primer bucle, la lista se crea (y se itera) como un todo; en realidad, existe cuando se ejecuta el bucle.

En el segundo bucle, no hay ninguna lista, solo hay valores subsecuentes producidos por el generador, uno por
uno.

Realiza tus propios experimentos.

https://edube.org/learn/python-essentials-2-esp/generadores-y-cierres-22

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:generadores?rev=1657119665

Last update: 06/07/2022 08:01

https://edube.org/learn/python-essentials-2-esp/generadores-y-cierres-22
https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:generadores?rev=1657119665

	Módulo 4 (Intermedio): Generadores
	Generadores, donde encontrarlos

	1
	1
	Fib_i-1 + Fib_i-2
	La sentencia yield
	Cómo construir un generador:

	Cómo construir tu propio generador
	Listas por comprensión
	La función list()
	El operador in
	El generador de números Fibonacci
	Listas por comprensión frente a generadores

