14/02/2026 23:14 1/10 Mddulo 4 (Intermedio): Generadores

Mddulo 4 (Intermedio): Generadores

Generadores, donde encontrarlos

Generador - ;Con qué asocias esta palabra? Quizas se refiere a algun dispositivo electrénico. O tal vez se
refiere a una maquina pesada disefiada para producir energia eléctrica u otra cosa.

Un generador de Python es un fragmento de cddigo especializado capaz de producir una serie de
valores y controlar el proceso de iteracion. Esta es la razén por la cual los generadores a menudo se
llaman iteradores, y aunque hay quienes pueden encontrar una diferencia entre estos dos, aqui los trataremos
COmMO uno mismo.

Puede que no te hayas dado cuenta, pero te has topado con generadores muchas, muchas veces antes. Echa un
vistazo al fragmento de cédigo:

i range
i

La funcién range() es un generador, la cual también es un iterador.
¢Cudl es la diferencia?

Una funcién devuelve un valor bien definido, el cual, puede ser el resultado de una evaluacién compleja, por
ejemplo, de un polinomio, y se invoca una vez, solo una vez.

Un generador devuelve una serie de valores, y en general, se invoca (implicitamente) mas de una vez.
En el ejemplo, el generador range () se invoca seis veces, proporcionando cinco valores de cero a cuatro.

El proceso anterior es completamente transparente. Vamos a arrojar algo de luz sobre el. Vamos a mostrarte el
protocolo iterador.

El protocolo iterador es una forma en que un objeto debe comportarse para ajustarse a las reglas
impuestas por el contexto de las sentencias for e in. Un objeto conforme al protocolo iterador se llama
iterador.

Un iterador debe proporcionar dos métodos:

e iter () elcual debe devolver el objeto en siy que se invoca una vez (es necesario para que
Python inicie con éxito la iteracién).

e next () el cual debe devolver el siguiente valor (primero, segundo, etc.) de la serie deseada:
sera invocado por las sentencias for/in para pasar a la siguiente iteracién; si no hay mas valores a
proporcionar, el método deberd generar la excepcion Stoplteration.

iSuena extrafio? De ninglna manera:

class Fib:
def init (self, nn):
print(" init ")
self. n = nn
self. i=20
self. pl =self. p2 =1

def iter (self):

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last

gg?oa;/ezzozz info:cursos:netacad:python:pe2m4:generadores https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:generadores?rev=1657119665

08:01

print(" iter ")
return self

def next (self):
print(" next ")
self. i +=1
if self. i > self. n:
raise StopIteration
if self. i in [1, 2]:
return 1
ret = self. pl + self. p2
self. pl, self. p2 = self. p2, ret
return ret

for i in Fib(10):
print(i)

Hemos creado una clase capaz de iterar a través de los primeros n valores (donde n es un pardmetro del
constructor) de los nimeros de Fibonacci.

Permitenos recordarte: los nimeros de Fibonacci(Fibi) se definen de la siguiente manera:

Fib,

1

Fib,

1

Fib,

Fib_i-1 + Fib_i-2

En otras palabras:

e Los primeros dos nimeros de la serie Fibonacci son 1
¢ Cualquier otro nimero de Fibonacci es la suma de los dos anteriores (por ejemplo, Fib3 = 2, Fib4 = 3,
Fib5 = 5, y asi sucesivamente).

Vamos a ver el cédigo:

¢ Las lineas 2 a 6: el constructor de la clase imprime un mensaje (lo usaremos para rastrear el
comportamiento de la clase), se preparan algunas variables: (__n para almacenar el limite de la serie, i

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 23:14

14/02/2026 23:14 3/10 Mddulo 4 (Intermedio): Generadores

para rastrear el nimero actual de la serie Fibonacci, y _ pl junto con _ p2 para guardar los dos nimeros
anteriores).

e Las lineas 8 a 10: el método __iter__ estd obligado a devolver el objeto iterador en si mismo; su propdsito

puede ser un poco ambiguo aqui, pero no hay misterio; trata de imaginar un objeto que no sea un
iterador (por ejemplo, es una coleccidn de algunas entidades), pero uno de sus componentes es un
iterador capaz de escanear la coleccién; el método __iter__ debe extraer el iterador y confiarle la
ejecucion del protocolo de iteracién; como puedes ver, el método comienza su accién imprimiendo
un mensaje.

e Las lineas 12 a 21: el método _ next__es responsable de crear la secuencia; es algo largo, pero esto

deberia hacerlo mas legible; primero, imprime un mensaje, luego actualiza el nimero de valores
deseados v, si llega al final de la secuencia, el método interrumpe la iteracion al generar la excepcién
Stoplteration; el resto del cédigo es simple y refleja con precision la definicién que te mostramos
anteriormente.

e Las lineas 24 y 25 hacen uso del iterador.

El cédigo produce el siguiente resultado:

__init
__iter
__next

1

__next

1

__hnext

N

__next

w

__next

ul

__next

8

__next

1

__hnext

2

__next

3

__next

55

__next

Observa:

¢ El objeto iterador se instancia primero.

¢ Después, Python invoca el método _iter para acceder al iterador real.

e El método _next__ se invoca once veces: las primeras diez veces produce valores Utiles, mientras que la
ultima finaliza la iteracion.

El ejemplo muestra una solucién donde el objeto iterador es parte de una clase mas compleja.

Fib:
~_init (self, nn
self. n nn
self. i
self. pl self p2

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last

gg?oa;/ezzozz info:cursos:netacad:python:pe2m4:generadores https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:generadores?rev=1657119665

08:01

__iter (self
"Fib iter"
self

__next (self

self. i +
self. i > self. n:
StopIteration
self. i :

ret = self. pl + self. p2
self. pl, self. p2 = self. p2, ret
ret

Class:
~_init (self, n
self. iter = Fib(n

__iter (self
"Class iter"
self. iter

object = Class

i object:
i

El céddigo no es sofisticado, pero presenta el concepto de una manera clara.
Echa un vistazo al cédigo en el editor.

Hemos colocado el iterador Fib dentro de otra clase (podemos decir que lo hemos compuesto dentro de la clase
Class). Se instancia junto con el objeto de Class.

El objeto de la clase se puede usar como un iterador cuando (y solo cuando) responde positivamente a la
invocacién _iter - esta clase puede hacerlo, y si se invoca de esta manera, proporciona un objeto capaz de
obedecer el protocolo de iteracidn.

Es por eso que la salida del cédigo es la misma que anteriormente, aunque el objeto de la clase Fib no se usa
explicitamente dentro del contexto del bucle for.

Class iter

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 23:14

14/02/2026 23:14 5/10 Mddulo 4 (Intermedio): Generadores

La sentencia yield

El protocolo iterador no es dificil de entender y usar, pero también es indiscutible que el protocolo es
bastante inconveniente.

La principal molestia que tiene es que necesita guardar el estado de la iteracion en las invocaciones
subsecuentes de __iter__.

Por ejemplo, el iterador Fib se ve obligado a almacenar con precisién el lugar en el que se detuvo la Ultima
invocacidn (es decir, el numero evaluado y los valores de los dos elementos anteriores). Esto hace que el cédigo
sea mas grande y menos comprensible.

Es por eso que Python ofrece una forma mucho mas efectiva, conveniente y elegante de escribir iteradores.

El concepto se basa fundamentalmente en un mecanismo muy especifico proporcionado por la palabra clave
reservada yield.

Se puede ver a la palabra clave reservada yield como un hermano mas inteligente de la sentencia return, con
una diferencia esencial.

Echa un vistazo a esta funcion:

fun(n
i range(n
i

Se ve extrafo, ;no? Esta claro que el bucle for no tiene posibilidad de terminar su primera ejecucién, ya que el
return lo rompera irrevocablemente.

Ademas, invocar la funcién no cambiard nada: el bucle for comenzara desde cero y se rompera
inmediatamente.

Podemos decir que dicha funcién no puede guardar y restaurar su estado en invocaciones posteriores.
Esto también significa que una funcién como esta no se puede usar como generador.

Hemos reemplazado exactamente una palabra en el cédigo, jpuedes verla?

fun(n
i range(n
i

Hemos puesto yield en lugar de return. Esta pequefia enmienda convierte la funcién en un generador, y el
ejecutar la sentencia yield tiene algunos efectos muy interesantes.

Primeramente, proporciona el valor de la expresién especificada después de la palabra clave reservada yield, al
igual que return, pero no pierde el estado de la funcién.

Todos los valores de las variables estan congelados y esperan la préxima invocacién, cuando se reanuda la
ejecucién (no desde cero, como ocurre después de un return).

Hay una limitacion importante: dicha funcién no debe invocarse explicitamente ya que no es una funcién;
es un objeto generador.

La invocacién devolverd el identificador del objeto, no la serie que esperamos del generador.

Debido a las mismas razones, la funcién anterior (la que tiene el return) solo se puede invocar explicitamente y

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
06/07/2022
08:01

info:cursos:netacad:python:pe2m4:generadores https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:generadores?rev=1657119665

no se debe usar como generador.
Como construir un generador:

Permitenos mostrarte el nuevo generador en accién.

Asi es como podemos usarlo:

fun(n
i range(n
i

\Y fun

;Puedes adivinar la salida?

A WN RO

Como construir tu propio generador

¢Qué pasa si necesitas un generador para producir las primeras n potencias de 2 ?

Nada dificil. Solo mira el cédigo en el editor.

powers of 2(n

power
i range(n
power
power *
v powers of 2
%

(Puedes adivinar la salida? Ejecuta el cddigo para verificar tus conjeturas.
Listas por comprension

Los generadores también se pueden usar con listas por comprensidn, justo como aqui:

powers of 2(n
power
i range(n
power

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 23:14

14/02/2026 23:14 7/10 Mddulo 4 (Intermedio): Generadores

power *

t X X powers of 2

Ejecuta el ejemplo y verifica la salida.

La funcion list()

La funcion list () puede transformar una serie de invocaciones de generador subsequentes en una lista real:

powers of 2(n

power
i range(n
power
power *

t = list(powers of 2
t

Nuevamente, intenta predecir el resultado y ejecuta el cddigo para verificar tus predicciones.

El operador in

Ademads, el contexto creado por el operador in también te permite usar un generador.

El ejemplo muestra cémo hacerlo:

powers of 2(n

power
i range(n
power
power *
i range
i powers of 2
i

(Cudl es la salida del cédigo? Ejecuta el programa y verifica.

El generador de numeros Fibonacci

Ahora veamos un generador de nimeros de la serie Fibonacci, asegurandonos que se vea mucho mejor que la
versién orientada a objetos basada en la implementacién directa del protocolo iterador.

Aqui esta:

fibonacci(n
p = pp

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last

update: info:cursos:netacad:python:pe2m4:generadores https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:generadores?rev=1657119665

06/07/2022
08:01
i range(n
i
n p + pp
pp, p = p, n
n

fibs list(fibonacci
fibs

Adivina la salida (una lista) producida por el generador y ejecuta el cédigo para verificar si tenias razén.

Debes poder recordar las reglas que rigen la creacién y el uso de un fenémeno de Python llamado listas por
comprension: una forma simple de crear listas y sus contenidos.

list 1
ex range
list 1.append ** ex
list 2 ** ex ex range
list 1
list 2

Existen dos partes dentro del cédigo, ambas crean una lista que contiene algunas de las primeras potencias
naturales de diez.

La primer parte utiliza una forma rutinaria del bucle for, mientras que la segunda hace uso de listas por
comprension y construye la lista en el momento, sin necesidad de un bucle o cualquier otro cédigo.

Pareciera que la lista se crea dentro de si misma; esto es falso, ya que Python tiene que realizar casi las mismas
operaciones que en la primera parte, pero el segundo formalismo es simplemente mas elegante y le evita al
lector cualquier detalle innecesario.

El ejemplo genera dos lineas idénticas que contienen el siguiente texto:

[1, 10, 160, 1000, 10000, 100000]
[1, 10, 100, 1000, 10000, 100000]

Hay una sintaxis muy interesante que queremos mostrarte ahora. Su usabilidad no se limita a listas por
comprension.

Es una expresion condicional: una forma de seleccionar uno de dos valores diferentes en funcion del
resultado de una expresion Booleana.

Observa:
expresién uno if condicidén else expresién dos

Puede parecer un poco sorprendente a primera vista, pero hay que tener en cuenta que no es una instruccion
condicional. Ademads, no es una instruccién en lo absoluto. Es un operador.

El valor que proporciona es expresidn_uno cuando la condicién es True (verdadero), y expresion_dos cuando sea

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 23:14

14/02/2026 23:14 9/10 Mddulo 4 (Intermedio): Generadores

falso.
the list
X range
the list.append X %

the list

El cédigo llena una lista con unos y ceros, si el indice de un elemento particular es impar, el elemento se
establece a 0, y a 1 de lo contrario.

:Simple? Quizas no a primera vista. ;Elegante? Indiscutiblemente.
:Se puede usar el mismo truco dentro de una comprensién de lista? Si, por supuesto.
the list X % X range
the list
Compacto y elegante: estas dos palabras vienen a la mente al mirar el cédigo.

Entonces, ;qué tienen en comun, generadores y listas por comprensién? ;Hay alguna conexién entre ellos? Si.
Una conexién algo suelta, pero inequivoca.

Solo un cambio puede convertir cualquier comprension en un generador.

Listas por comprension frente a generadores

Ahora observa el cddigo a continuacién y ve si puedes encontrar el detalle que convierte una comprensiéon de
lista en un generador:

the list X % X range
the generator X % X range

v the list:

V end n n
v the generator:
V end n n

Son los paréntesis. Los corchetes hacen una comprensidn, los paréntesis hacen un generador.

El cédigo, cuando se ejecuta, produce dos lineas idénticas:

1010101010
1010101010

:Cémo puedes saber que la segunda asignacién crea un generador, no una lista?

Hay algunas pruebas que podemos mostrarte. Aplica la funcién len() a ambas entidades.

len(the list) dard como resultado 10. Claro y predecible. Len(the generator) generard una excepcion,

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
06/07/2022
08:01

info:cursos:netacad:python:pe2m4:generadores https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:generadores?rev=1657119665

y veras el siguiente mensaje:
TypeError: object of type 'generator' has no len()

Por supuesto, guardar la lista o el generador no es necesario; puedes crearlos exactamente en el lugar donde
los necesites, justo como aqui:

Y X % X range
V end n n

\ X % X range
V end n n

Nota: la misma apariencia de la salida no significa que ambos bucles funcionen de la misma manera. En el
primer bucle, la lista se crea (y se itera) como un todo; en realidad, existe cuando se ejecuta el bucle.

En el segundo bucle, no hay ninguna lista, solo hay valores subsecuentes producidos por el generador, uno por
uno.

Realiza tus propios experimentos.

https://edube.org/learn/python-essentials-2-esp/generadores-y-cierres-22

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Last update: 06/07/2022 08:01

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 23:14

https://edube.org/learn/python-essentials-2-esp/generadores-y-cierres-22
https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:netacad:python:pe2m4:generadores?rev=1657119665

	Módulo 4 (Intermedio): Generadores
	Generadores, donde encontrarlos

	1
	1
	Fib_i-1 + Fib_i-2
	La sentencia yield
	Cómo construir un generador:

	Cómo construir tu propio generador
	Listas por comprensión
	La función list()
	El operador in
	El generador de números Fibonacci
	Listas por comprensión frente a generadores

