
23/05/2025 09:28 1/3 1.6 Events and how to handle them

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

1.6 Events and how to handle them

Event handling

As you already know, events are the fuel which propel the application’s movements. All events come to the
event manager, which is responsible for dispatching them to all the application components. This also means
that some of the events may launch some of your callbacks, which makes you responsible for preparing the
proper reactions to the user’s actions.

Now it’s time to show you some details of the events’ lives and anatomy. We’ll also show you how the events
are able to influence a widget’s state, and how you control the event manager’s behavior.

For now, however, we want you to focus your attention on a very helpful method we’ll use to arrange
communication between you and your application.

Of course, you can use the regular print() function to show messages and present a debug trace. The output
will appear in the standard Python console, without affecting the application window. It’s okay if used in the
early stages of development, but it’s very inelegant if you want the application to behave in a mature way.

The function we’ll use for our experiments is named showinfo(), it comes from the messagebox module, and
it needs two arguments which are strings:

output

messagebox.showinfo(title, info)

the first string will be used by the function to title the message box which will appear on the screen;
you can use an empty string, and the box will be untitled then;
the second string is a message to display inside the box; the string can be of any length (but
remember, the screen isn’t elastic and won’t stretch if you’re going to display a whole encyclopedia
volume); note: you can use the \n digraph to visually break the info into separate lines.

We’ll ask the showinfo() function to show us its possibilities.

In the editor we've provided a very simple code demonstrating how showinfo() works:

import tkinter
from tkinter import messagebox

def clicked():
 messagebox.showinfo("info", "some\ninfo")

window = tkinter.Tk()
button_1 = tkinter.Button(window, text="Show info", command=clicked)
button_1.pack()
button_2 = tkinter.Button(window, text="Quit", command=window.destroy)
button_2.pack()
window.mainloop()

Note the \n embedded inside the info string.

https://miguelangel.torresegea.es/wiki/_export/code/info:cursos:pue:python-pcpp1:m3:1.6?codeblock=0

Last
update:
23/12/2023
11:50

info:cursos:pue:python-pcpp1:m3:1.6 https://miguelangel.torresegea.es/wiki/info:cursos:pue:python-pcpp1:m3:1.6?rev=1703361010

https://miguelangel.torresegea.es/wiki/ Printed on 23/05/2025 09:28

And this is what the final message box looks like:

If your widget is a clickable one, you can connect a callback to it using its command property, while the
property can be initially set by the constructor invocation.

We’ve already practiced this, so the snippet in the editor won’t be a surprise to you.

import tkinter as tk
from tkinter import messagebox

def click():
 tk.messagebox.showinfo("Click!","I love clicks!")

window = tk.Tk()
label = tk.Label(window, text="Label")
label.pack()

button = tk.Button(window, text="Button", command=click)
button.pack(fill=tk.X)

frame = tk.Frame(window, height=30, width=100, bg="#55BF40")
frame.pack();

window.mainloop()

Note – there are three widgets in all, but only one of them (the Button) is clickable by nature. Such a widget’s
constructor is equipped with the command parameter, which is used to bind a callback.

The window along with its message box looks like this:

23/05/2025 09:28 3/3 1.6 Events and how to handle them

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Some of the widgets (especially those that are not clickable by nature) have neither a command property
nor a constructor parameter of that name.

Fortunately, you’re still able to bind a callback to any of the events it may receive (including clicks, of course)
and this is done with a method named – it couldn’t be anything else – bind():

output

widget.bind(event, callback)

The bind() method needs two arguments:

the event you want to launch your callback with; the callback itself.

Looks clear, doesn’t it?

Of course, there are two questions that should be answered immediately:

Q: What is an event from the event controller’s point of view?
A: It’s an object carrying some useful info about what actually happens when the event has been
induced (by the user or by another factor).
Q: How are the events identified?
A: By unique names – each event has its own name and the name is just a unified string.

Useful events

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/info:cursos:pue:python-pcpp1:m3:1.6?rev=1703361010

Last update: 23/12/2023 11:50

https://miguelangel.torresegea.es/wiki/_export/code/info:cursos:pue:python-pcpp1:m3:1.6?codeblock=3
https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:pue:python-pcpp1:m3:1.6?rev=1703361010

	1.6 Events and how to handle them
	Event handling
	Useful events

