
17/04/2025 16:35 1/3 1.9 Looking at variables

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

1.9 Looking at variables

Variables

To implement some of its functions, Tkinter uses a very special kind of variable called an observable variable.
This variable works like a regular variable (i.e., it’s able to store values which are accessible to the outside
world) but there is something more – any change of the variable’s state can be observed by a number of
external agents. For example, the Entry widget can use its own observable variable to inform other objects
that the contents of the input field have been changed.

From a technical point of view, such a variable is an object of the container class. This means that a variable
of that kind has to be explicitly created and initialized.

There is another important difference – these variables are typed. You have to be aware of what type of value
you want to store in them, and don’t change your mind during the variable’s life.

Note: you can only create an observable variable after the main window initialization. Don’t forget this –
you’ve been warned!

There are four kinds (types) of observable variable used by tkinter:

BooleanVar
DoubleVar
IntVar
StringVar

The names you see are also the constructors’ names, so if you want to use any of the variables, you must
invoke the proper constructor and save the returned object.

Note: the newly created variables are set to:

integer 0 for IntVar;
float 0.0 for DoubleVar;
Boolean False for BooleanVar;
string «» for StringVar.

For example, if a widget is able to serve an observable variable of the string type, you’ll create it in the following
way:

s = StringVar()

If you want to assign a value to an observable variable, you have to invoke its method, named set(), and
pass an argument to it. The argument should be of a type compatible with the variable’s kind.

The example shows how to assign a string to a variable of the StringVar kind:

strng.set("To be or not to be")

If you need to use the value stored in a variable, you have to use the variable method named get():

sn = strng.get()

The method returns the value of the type compatible with the variable’s kind.

Last update: 28/12/2023
10:48 info:cursos:pue:python-pcpp1:m3:1.9 https://miguelangel.torresegea.es/wiki/info:cursos:pue:python-pcpp1:m3:1.9

https://miguelangel.torresegea.es/wiki/ Printed on 17/04/2025 16:35

Each observable variable can be enriched with a number of observers. An observer is a function (a kind of
callback) which will be invoked automatically each time a specified event occurs in the variable’s life.

The number of observers is not limited.

Adding an observer to a variable is done by a method named trace():

obsid = variable.trace(trace_mode, observer)

The method takes two arguments:

a string describing which events should trigger an observer – the possible values are:
«r» – if you want to be aware of the variable reads (accessing its value through get())
«w» – if you want to be aware of the variable writes (changing its value through set())
«u» – if you want to be aware of the variable’s annihilation (removing the object through del)

a reference to a function which will be invoked when the specified event occurs.

The function returns a string which is a unique observer identifier. Don’t try to interpret its contents. You don’t
want to know its meaning.

The observer should be declared as a three-parameter function:

def observer(id, ix, act):
:
:

id – an internal observable variable identifier (unusable for us);
ix – an empty string (always – don’t ask us why, it’s tkinter’s business)
act – a string informing us what happened to the variable or, in other words, what reason triggered the
observer ('r', 'w' or 'u')

If you don’t need any of the arguments, you can declare the observer as: def obs(*):

Removing the observer is done with a method named trace_vdelete():

variable.trace_vdelete(trace_mode,obsid)

Its arguments’ meanings are as follows:

trace_mode – the mode in which the observer has been created;
obsid – the observer’s identifier obtained from the previous trace() invocation.

We’ve prepared a simple snippet showing how the observable variables cooperate with their observers. Take a
look at it, we've provided it in the editor.

import tkinter as tk

def r_observer(*args):
 print("Reading")

def w_observer(*args):
 print("Writing")

dummy = tk.Tk() # we need this although we won't display any windows

17/04/2025 16:35 3/3 1.9 Looking at variables

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

variable = tk.StringVar()
variable.set("abc")
r_obsid = variable.trace("r", r_observer)
w_obsid = variable.trace("w", w_observer)
variable.set(variable.get() + 'd') # read followed by write
variable.trace_vdelete("r", r_obsid)
variable.set(variable.get() + 'e')
variable.trace_vdelete("w", w_obsid)
variable.set(variable.get() + 'f')
print(variable.get())

The code creates one observable variable of type StringVar and assigns two observers to it – one for reading
and one for writing. The observers send a line to stdout when invoked.

Trace the code’s execution and try to explain its behavior. We’re sure you can do it.

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/info:cursos:pue:python-pcpp1:m3:1.9

Last update: 28/12/2023 10:48

https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:pue:python-pcpp1:m3:1.9

	1.9 Looking at variables
	Variables

