
13/06/2025 13:16 1/3 2.1 Python Professional Course Series: Lab & Assessment

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

2.1 Python Professional Course Series: Lab &
Assessment

Working with RESTful APIs: Lab & Assessment

Well done, you've reached the end of the course!

In this section, it's time to translate your Python skills and everything you've learned about RESTful APIs into
some real-world projects. Specifically, we'll ask you to create:

an HTTP server availability checker;
a Vehicle data decoder/encoder;
a Stock Exchange viewer;
a Vintage Cars database.

You will also have a chance to do the quiz and the final test to see how well you've mastered the material, and
check if you're prepared for the certification exam (available soon).

Completing the quiz and the final test concludes the course. Are you ready?

Lab 1

We want you to write a simple CLI (Command Line Interface) tool which can be used in order to diagnose the
current status of a particular http server. The tool should accept one or two command line arguments:

(obligatory) the address (IP or qualified domain name) of the server to be diagnosed (the diagnosis will be
extremely simple, we just want to know if the server is dead or alive)
(optional) the server's port number (any absence of the argument means that the tool should use port
80)
use the HEAD method instead of GET — it forces the server to send the full response header but without
any content; it's enough to check if the server is working properly; the rest of the request remains the
same as for GET.

We also assume that:

the tool checks if it is invoked properly, and when the invocation lacks any arguments, the tool prints an
error message and returns an exit code equal to 1;
if there are two arguments in the invocation line and the second one is not an integer number in the
range 1..65535, the tool prints an error message and returns an exit code equal to 2;
if the tool experiences a timeout during connection, an error message is printed and 3 is returned as the
exit code;
if the connection fails due to any other reason, an error message appears and 4 is returned as the exit
code;
if the connection succeeds, the very first line of the server’s response is printed.

Hints:

to access command line arguments, use the argv variable from the sys module; its length is always one
more than the actual number of arguments, as argv[0] stores your script's name; this means that the first
argument is at argv[1] and the second at argv[2]; don't forget that the command line arguments are
always strings!
returning an exit code equal to n can be achieved by invoking the exit(n) function.

Last
update:
19/01/2024
09:49

info:cursos:pue:python-pcpp1:m4:2.1 https://miguelangel.torresegea.es/wiki/info:cursos:pue:python-pcpp1:m4:2.1?rev=1705686542

https://miguelangel.torresegea.es/wiki/ Printed on 13/06/2025 13:16

Assuming that the tool is placed in a source file name sitechecker.py, here are some real-use cases:

solution

import sys
import socket

if len(sys.argv) not in [2, 3]:
 print("Improper number of arguments: at least one is required" +
 "and not more than two are allowed:")
 print("- http server's address (required)")
 print("- port number (defaults to 80 if not specified)")
 exit(1)

addr = sys.argv[1]
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
if len(sys.argv) == 3:
 try:
 port = int(sys.argv[2])
 if not (1 <= port <= 65535):
 raise ValueError
 except ValueError:
 print("Port number is invalid - exiting.")
 exit(2)
else:
 port = 80

try:
 sock.connect((addr, port))
except socket.timeout:

https://miguelangel.torresegea.es/wiki/_detail/info:cursos:pue:python-pcpp1:m4:pasted:20240119-094505.png?id=info%3Acursos%3Apue%3Apython-pcpp1%3Am4%3A2.1

13/06/2025 13:16 3/3 2.1 Python Professional Course Series: Lab & Assessment

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

 print("The server" + addr + "seems to be dead - sorry.")
 exit(3)
except socket.gaierror:
 print("Server address" + addr + "is invalid or malformed - sorry.")
 exit(4)

request = b"HEAD / HTTP/1.0\r\nHost: " + \
 bytes(addr, "utf8") + \
 b"\r\nConnection:close\r\n\r\n"

sock.send(request)
answer = sock.recv(100).decode("utf8")
sock.shutdown(socket.SHUT_RDWR)
sock.close()
print(answer[:answer.find('\r')])

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/info:cursos:pue:python-pcpp1:m4:2.1?rev=1705686542

Last update: 19/01/2024 09:49

https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:pue:python-pcpp1:m4:2.1?rev=1705686542

	2.1 Python Professional Course Series: Lab & Assessment
	Working with RESTful APIs: Lab & Assessment
	Lab 1
	solution

