
14/02/2026 10:28 1/9 Curso python udemy

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Curso python udemy

interesante

Numpy: manejo de matrices
Web Mapping: creación mapas interactivos HTML
Manejo Webcam
Bokeh: libreria representación gráficos
Pandas: libreria de analisis de datos
Flask: web development
openCV: image processing library
Mobile app: apk
Web Scraping
pyinstaller: creación de ejecutables

Cheatsheet: Data Types

Integers are used to represent whole numbers:

rank = 10
eggs = 12
people = 3

Floats represent decimal numbers:

temperature = 10.2
rainfall = 5.98
elevation = 1031.88

Strings represent text:

message = "Welcome to our online shop!"
name = "John"
serial = "R001991981SW"

Lists represent arrays of values that may change during the course of the program:

members = ["Sim Soony", "Marry Roundknee", "Jack Corridor"]
pixel_values = [252, 251, 251, 253, 250, 248, 247]

Dictionaries represent pairs of keys and values:

phone_numbers = {"John Smith": "+37682929928", "Marry Simpons":
"+423998200919"}
volcano_elevations = {"Glacier Peak": 3213.9, "Rainer": 4392.1}

Keys of a dictionary can be extracted with:

phone_numbers.keys()

Values of a dictionary can be extracted with:

phone_numbers.values()

Last
update:
09/10/2024
23:54

info:cursos:udemy:python-mega-course https://miguelangel.torresegea.es/wiki/info:cursos:udemy:python-mega-course?rev=1728543256

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 10:28

Tuples represent arrays of values that are not to be changed during the course of the program:

vowels = ('a', 'e', 'i', 'o', 'u')
one_digits = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

You can get a list of attributes of a data type has using:

dir(str)
dir(list)
dir(dict)

You can get a list of Python builtin functions using:

dir(__builtins__)

You can get the documentation of a Python data type using:

help(str)
help(str.replace)
help(dict.values)

Tip: Converting Between Datatypes

Sometimes you might need to convert between different data types in Python for one reason or another. That is
very easy to do:

From tuple to list:

cool_tuple = (1, 2, 3)
cool_list = list(cool_tuple)
cool_list # [1, 2, 3]

From list to tuple:

cool_list = [1, 2, 3]
cool_tuple = tuple(cool_list)
cool_tuple # (1, 2, 3)

From string to list:

cool_string = "Hello"
cool_list = list(cool_string)
cool_list # ['H', 'e', 'l', 'l', 'o']

From list to string:

cool_list = ['H', 'e', 'l', 'l', 'o']
cool_string = str.join("", cool_list)
cool_string # 'Hello'

As can be seen above, converting a list into a string is more complex. Here str() is not sufficient. We need

14/02/2026 10:28 3/9 Curso python udemy

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

str.join(). Try running the code above again, but this time using str.join(«—», cool_list) in the second line. You
will understand how str.join() works.

Cheatsheet: Operations with Data Types

Lists, strings, and tuples have a positive index system:

["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
 0 1 2 3 4 5 6

And they have a negative index system as well:

["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
 -7 -6 -5 -4 -3 -2 -1

In a list, the 2nd, 3rd, and 4th items can be accessed with:

days = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
days[1:4]
Output: ['Tue', 'Wed', 'Thu']

First three items of a list:

days = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
days[:3]
Output:['Mon', 'Tue', 'Wed']

Last three items of a list:

days = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
days[-3:]
Output: ['Fri', 'Sat', 'Sun']

Everything but the last:

days = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
days[:-1]
Output: ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat']

Everything but the last two:

days = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
days[:-2]
Output: ['Mon', 'Tue', 'Wed', 'Thu', 'Fri']

A dictionary value can be accessed using its corresponding dictionary key:

phone_numbers = {"John":"+37682929928","Marry":"+423998200919"}
phone_numbers["Marry"]
Output: '+423998200919'

Last
update:
09/10/2024
23:54

info:cursos:udemy:python-mega-course https://miguelangel.torresegea.es/wiki/info:cursos:udemy:python-mega-course?rev=1728543256

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 10:28

Cheatsheet: Functions and Conditionals

Define functions:

def cube_volume(a):
 return a * a * a

Write if-else conditionals:

message = "hello there"

if "hello" in message:
 print("hi")
else:
 print("I don't understand")

Write if-elif-else conditionals:

message = "hello there"

if "hello" in message:
 print("hi")
elif "hi" in message:
 print("hi")
elif "hey" in message:
 print("hi")
else:
 print("I don't understand")

Use the and operator to check if both conditions are True at the same time:

x = 1
y = 1

if x == 1 and y==1:
 print("Yes")
else:
 print("No")

Use the or operator to check if at least one condition is True:

x = 1
y = 2

if x == 1 or y==2:
 print("Yes")
else:
 print("No")

Check if a value is of a particular type with isinstance:

isinstance("abc", str)

14/02/2026 10:28 5/9 Curso python udemy

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

isinstance([1, 2, 3], list)
or directly:

type("abc") == str
type([1, 2, 3]) == lst

Cheatsheet: Loops

A for-loop is useful to repeatedly execute a block of code.

You can create a for-loop like so:

for letter in 'abc':
 print(letter.upper())

output

A
B
C

As you can see, the for-loop repeatedly converted all the items of 'abc' to uppercase.
The name after for (e.g. letter) is just a variable name

You can loop over dictionary keys as follows:

phone_numbers = {"John Smith":"+37682929928","Marry Simpons":"+423998200919"}
for value in phone_numbers.keys():
 print(value)

output

John Smith
Marry Simpsons

You can loop over dictionary values:

phone_numbers = {"John Smith":"+37682929928","Marry Simpons":"+423998200919"}
for value in phone_numbers.values():
 print(value)

output

+37682929928
+423998200919

You can loop over dictionary items:

phone_numbers = {"John Smith":"+37682929928","Marry Simpons":"+423998200919"}
for key, value in phone_numbers.items():

https://miguelangel.torresegea.es/wiki/_export/code/info:cursos:udemy:python-mega-course?codeblock=30
https://miguelangel.torresegea.es/wiki/_export/code/info:cursos:udemy:python-mega-course?codeblock=32
https://miguelangel.torresegea.es/wiki/_export/code/info:cursos:udemy:python-mega-course?codeblock=34

Last
update:
09/10/2024
23:54

info:cursos:udemy:python-mega-course https://miguelangel.torresegea.es/wiki/info:cursos:udemy:python-mega-course?rev=1728543256

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 10:28

 print(key, value)

output

John Smith +37682929928
Marry Simpons +423998200919

We also have while-loops. The code under a while-loop will run as long as the while-loop condition is true:

while datetime.datetime.now() < datetime.datetime(2090, 8, 20, 19, 30, 20):
 print("It's not yet 19:30:20 of 2090.8.20")

The loop above will print out the string inside print() over and over again until the 20th of August,
2090.

Cheatsheet: List Comprehensions

A list comprehension is an expression that creates a list by iterating over another container.

A basic list comprehension:

[i*2 for i in [1, 5, 10]]

output

[2, 10, 20]

List comprehension with if condition:

[i*2 for i in [1, -2, 10] if i>0]

output

[2, 20]

List comprehension with an if and else condition:

[i*2 if i>0 else 0 for i in [1, -2, 10]]

output

[2, 0, 20]

https://miguelangel.torresegea.es/wiki/_export/code/info:cursos:udemy:python-mega-course?codeblock=36
https://miguelangel.torresegea.es/wiki/_export/code/info:cursos:udemy:python-mega-course?codeblock=39
https://miguelangel.torresegea.es/wiki/_export/code/info:cursos:udemy:python-mega-course?codeblock=41
https://miguelangel.torresegea.es/wiki/_export/code/info:cursos:udemy:python-mega-course?codeblock=43

14/02/2026 10:28 7/9 Curso python udemy

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Cheatsheet: More on Functions

Functions can have more than one parameter:

def volume(a, b, c):
 return a * b * c

Functions can have default parameters (e.g. coefficient):

def converter(feet, coefficient = 3.2808):
 meters = feet / coefficient
 return meters

print(converter(10))
Output: 3.0480370641306997

Arguments can be passed as non-keyword (positional) arguments (e.g. a) or keyword arguments (e.g.
b=2 and c=10):

def volume(a, b, c):
 return a * b * c

print(volume(1, b=2, c=10))

An *args parameter allows the function to be called with an arbitrary number of non-keyword arguments:

def find_max(*args):
 return max(args)
print(find_max(3, 99, 1001, 2, 8))
Output: 1001

A **kwargs parameter allows the function to be called with an arbitrary number of keyword arguments:

def find_winner(**kwargs):
 return max(kwargs, key = kwargs.get)

print(find_winner(Andy = 17, Marry = 19, Sim = 45, Kae = 34))
Output: Sim

Here's a summary of function elements:

https://miguelangel.torresegea.es/wiki/_detail/info:cursos:udemy:pasted:20241009-022827.png?id=info%3Acursos%3Audemy%3Apython-mega-course

Last
update:
09/10/2024
23:54

info:cursos:udemy:python-mega-course https://miguelangel.torresegea.es/wiki/info:cursos:udemy:python-mega-course?rev=1728543256

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 10:28

Cheatsheet: File Processing

You can read an existing file with Python:

with open("file.txt") as file:
 content = file.read()

You can create a new file with Python and write some text on it:

with open("file.txt", "w") as file:
 content = file.write("Sample text")

You can append text to an existing file without overwriting it:

with open("file.txt", "a") as file:
 content = file.write("More sample text")

You can both append and read a file with:

with open("file.txt", "a+") as file:
 content = file.write("Even more sample text")
 file.seek(0)
 content = file.read()

Cheatsheet: Imported Modules

Builtin objects are all objects that are written inside the Python interpreter in C language.
Builtin modules contain builtins objects.
Some builtin objects are not immediately available in the global namespace. They are parts of a builtin
module. To use those objects the module needs to be imported first. E.g.:

import time
time.sleep(5)

A list of all builtin modules can be printed out with:

import sys
sys.builtin_module_names

Standard libraries is a jargon that includes both builtin modules written in C and also modules written in
Python.
Standard libraries written in Python reside in the Python installation directory as .py files. You can find
their directory path with sys.prefix.
Packages are a collection of .py modules.
Third-party libraries are packages or modules written by third-party persons (not the Python core
development team).
Third-party libraries can be installed from the terminal/command line:

Windows:

pip install pandas # or use

14/02/2026 10:28 9/9 Curso python udemy

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

python -m pip install pandas # if that doesn't work.

Mac and Linux:

pip3 install pandas # or use
python3 -m pip install pandas # if that doesn't work.

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/info:cursos:udemy:python-mega-course?rev=1728543256

Last update: 09/10/2024 23:54

https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:cursos:udemy:python-mega-course?rev=1728543256

	Curso python udemy
	interesante
	Cheatsheet: Data Types
	Tip: Converting Between Datatypes
	Cheatsheet: Operations with Data Types
	Cheatsheet: Functions and Conditionals
	Cheatsheet: Loops
	Cheatsheet: List Comprehensions
	Cheatsheet: More on Functions
	Cheatsheet: File Processing
	Cheatsheet: Imported Modules

