
14/02/2026 12:09 1/4 [Docker SecDevOps] Capítulo 2 : Dockerfile

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

[Docker SecDevOps] Capítulo 2 : Dockerfile

comentarios o directivas
INSTRUCCIÓN argumentos : por convención, instrucción en mayúsculas
primera instrucción: FROM (o ARG)

build

docker build o docker image build
-t <nombre_imagen>[:tag]
-f <nombre_fichero_Dockerfile>

directivas

antes de la instrucción FROM
no repeticiones
formato concreto: # directiva=valor (respetando espacios) → si no, es tratado como un comentario
directivas soportadas actualmente:

escape : caracter de escape en ficheros Dockerfile. Soporta \ y `

ENV

variables de entorno
ENV var=valor
ENV var=valor var2=valor2 var3=$var2 ← produce una única capa de caché
ENV var valor
se referencian con el signo $ o ${}
funcionalidades tipo bash:

${var:-texto} : si var tiene valor propio (está inicializada) lo devuelve, si no, devuelve texto
${var:+texto} : si var tiene valor propio, devuelve la cadena texto, si no, devuelve vacío

se pueden usar en:
ADD
COPY
ENV
EXPOSE
FROM
ONBUILD
LABEL
STOPSIGNAL
USER
VOLUME
WORKDIR

son de tipo global (afecta a todas las imágenes que desciendan donde fueron definidas)
también llegan al contenedor
se pueden sobrescribir con el parámetro –env en docker run

.dockerignore

se procesa al mismo tiempo que se procesa el contexto en el build de una imagen

Last
update:
29/01/2019
06:21

info:libros:docker-sec-dev-ops:cap2 https://miguelangel.torresegea.es/wiki/info:libros:docker-sec-dev-ops:cap2?rev=1548771673

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 12:09

ignora todos los archivos / directorios que estén especificados
uso de comodines: *, ?, !
comentarios: #
importancia del orden de criterio de exclusión:

*.md
!README.md

*.md
!README*.md
README-secret.md

*.md
README-secret.md
!README*.md

el primer ejemplo excluye todos los ficheros .MD excepto el README.md
el segundo excluye todos los ficheros .MD excepto los README*.md, aunque el README-secret.md
también quedaría excluido
el tercer ejemplo es una mala construcción por el orden de las instrucciones, ya que el fichero
README-secret.md quedaría incluido, cuando lo que pretendemos es excluirlo

se puede excluir Dockerfile también, pero solo se ignorará en las instrucciones COPY y ADD

FROM

FROM <imagen>[:tag|@digest] [AS <nombre>]
si no se especifica tag se usará latest
el digest es el SHA256 de la imagen: FROM busybox@sha256:3e8…0e7

primera instrucción del Dockerfile (con excepción de ARG)

multistage

uso de más de una imagen Docker para realizar la tarea

uso de 2 o más FROM en el Dockerfile
la imagen del último FROM es la que prevalece, todas las anteriores son descartadas
es posible «traspasar» ficheros de un fase a otra con un parámetro en el comando COPY

COPY –from=0 ….
0 haría referencia a la primera imagen usada, también se puede hacer referencia a través del
nombre asignado en AS

RUN

ejecución de comandos en la imagen que estamos construyendo

RUN <comando> → comando es pasado como parámetro a la shell del sistema:
linux: /bin/sh -c
windows: cmd /s /c

RUN [«ejecutable»,«parámetro1»,«parámetro2»]
no se ejecuta shell (o para cambiar la shell o entornos sin shell)

14/02/2026 12:09 3/4 [Docker SecDevOps] Capítulo 2 : Dockerfile

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

vector JSON (comillas obligatorias)
cada RUN genera una layer(capa)
uso de | (pipe) para redirigir la salida de un ejecutable a otro

tener en cuenta que si falla la ejecución del primero, pero no del segundo, la ejecución se dará por
buena
se puede usar set -o pipefail para evitar este comportamiento (aunque no todos los shell lo
soportan)
RUN [«/bin/bash», «-c»,«set -o pipefail && wget …»]

CMD

ejecución en tiempo de creación del container

proveer de valores por defecto
los parámetros se pasarían a ENTRYPOINT
entre esos valores se puede incluir un ejecutable
3 formas:

CMD [«ejecutable»,«param1»,«param2»]
CMD [«param1»,«param2»,«param3»] ← parámetros añadidos a ENTRYPOINT (también debe
estar expresado como vector JSON)
CMD comando param1 param2 ← el comando se ejecuta a través de la shell

para asegurarse la ejecución de un programa hay que combinar ENTRYPOINT con CMD
si se pasan parámetros en el docker run, estos sobreescriben los especifiados en el CMD

ENTRYPOINT

es el comando recomendable para definir el comando principal de una imagen

2 formas:
ENTRYPOINT [«ejecutable»,«param1»,«param2»]
ENTRYPOINT comando param1 param2 ← comando ejecutado a través de la shell

es posible sobrescribir el ENTRYPOINT de una imagen a través del parámetro --entrypoint en docker
run

docker run --%entrypoint "/bin/ls" debian -al /root'' * -al y /root son
parámetros pasados al nuevo **entrypoint** * importante que la última
instrucción ejecutada por el ENTRYPOINT se convierta en en el proceso con
PID 1 del contenedor (a través de la instrucción **exec**) para que reciba
las señales Unix enviadas al contenedor.<code bash> #!/bin/bash set -e if
["$1" = 'postgres']; then chown -R postgres "$PGDATA" if [-z "$(ls -A
"$PGDATA")"]; then gosu postgres initdb fi exec gosu postgres "$@" fi
exec "$@"</code> * como regla general, debemos tener en cuenta: * cada
Dockerfile debe tener definido un CMD o ENTRYPOINT * cuando queremos usar
un contenedor como un fichero ejecutable, debemos usar ENTRYPOINT * CMD se
debería usar para definir los parámetros por defecto para ENTRYPOINT o
para ejecutar un comando de apoyo para la creación del contenedor, pero no
el comando que ejecuta el proceso final del mismo == LABEL añade metadatos
a una imagen * ''LABEL key=value [key2=value2]'' * se pueden crear varias
etiquetas o una única separando valores * etiquetas con el mismo nombre,
prevalece la última == EXPOSE indica puertos y protocolos donde escuchará
el contenedor * con **docker run** podemos mapear los puertos con: * ''-p
host:contenedor'' * ''-P'' : mapea los puertos indicados en EXPOSE a
puertos no privilegiados aleatorios * los contenedores que comparten red,
no necesitan mapear puertos, tienen acceso a todos ellos. == ADD copia

Last
update:
29/01/2019
06:21

info:libros:docker-sec-dev-ops:cap2 https://miguelangel.torresegea.es/wiki/info:libros:docker-sec-dev-ops:cap2?rev=1548771673

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 12:09

ficheros, directorios o ficheros remotos al directorio de destino en la
imagen docker * ''ADD <src>... <dest>'' * ''ADD ["<src>",... "<dest>"] :
obligatorio en el caso de que algún elemento contenga espacios * origen
puede ser absoluto o relativo al contexto * si es un directorio, copiará
el contenido * destino puede ser absoluto o relativo al WORKDIR * si acaba
en **/** copia el fichero origen con el mismo nombre * origen permite
caracteres comodín usando las reglas de filepath.Match del lenguaje Go:
*****, **?%% * si origen está en un formato de compresión reconocido
(gzip,bzip,xz) se descomprime automaticamente en destino * si origen es
una URL a un archivo comprimido, no se descomprime, solo se copia. * si se
especifican múltiples orígenes o comodines, destino ha de ser directorio
(y acabar en /) * si destino no existe, se creará, con los directorios
intermedios necesarios * todos los ficheros y directorios serán creados
con UID/GID 0 * en caso de URLs a ficheros remotos, los permisos se
establecen a 600 * ADD no tiene sistema de autentificación implementado,
se debería usar RUN**

== COPY

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/info:libros:docker-sec-dev-ops:cap2?rev=1548771673

Last update: 29/01/2019 06:21

https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:libros:docker-sec-dev-ops:cap2?rev=1548771673

	[Docker SecDevOps] Capítulo 2 : Dockerfile
	build
	directivas
	ENV
	.dockerignore
	FROM
	multistage

	RUN
	CMD
	ENTRYPOINT

