14/02/2026 12:09 1/4 [Docker SecDevOps] Capitulo 2 : Dockerfile

[Docker SecDevOps] Capitulo 2 : Dockerfile

e # comentarios o directivas
e INSTRUCCION argumentos : por convencidn, instruccién en mayusculas
e primera instruccién: FROM (o ARG)

build

e docker build o docker image build
o -t <nombre imagen>[:tag]
o -f <nombre_fichero Dockerfile>

directivas

antes de la instruccion FROM

* no repeticiones

formato concreto: # directiva=valor (respetando espacios) - si no, es tratado como un comentario
¢ directivas soportadas actualmente:

o escape : caracter de escape en ficheros Dockerfile. Soporta \y °

ENV

¢ variables de entorno
e ENV var=valor
e ENV var=valor var2=valor2 var3=$var2 « produce una Unica capa de caché
e ENV var valor
¢ se referencian con el signo $ 0 ${}
e funcionalidades tipo bash:
o ${var:-texto} : si var tiene valor propio (esta inicializada) lo devuelve, si no, devuelve texto
o ${var:+texto} : si var tiene valor propio, devuelve la cadena texto, si no, devuelve vacio
¢ se pueden usar en:
o ADD
o COPY
o ENV
o EXPOSE
o FROM
o ONBUILD
o LABEL
o STOPSIGNAL
o USER
o VOLUME
o WORKDIR
¢ son de tipo global (afecta a todas las imagenes que desciendan donde fueron definidas)
e también llegan al contenedor
¢ se pueden sobrescribir con el parametro -env en docker run

.dockerignore

e se procesa al mismo tiempo que se procesa el contexto en el build de una imagen

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last

;8?5;72:019 info:libros:docker-sec-dev-ops:cap2 https://miguelangel.torresegea.es/wiki/info:libros:docker-sec-dev-ops:cap2?rev=1548771673

06:21

e ignora todos los archivos / directorios que estén especificados

uso de comodines: *, 2, !
comentarios: #

e importancia del orden de criterio de exclusion:

*.md
'README . md
*.md
'README* . md

README -secret.md

*.md
README -secret.md
IREADME* . md

o el primer ejemplo excluye todos los ficheros .MD excepto el README.md

o el segundo excluye todos los ficheros .MD excepto los README*.md, aunque el README-secret.md
también quedaria excluido

o el tercer ejemplo es una mala construccién por el orden de las instrucciones, ya que el fichero
README-secret.md quedaria incluido, cuando lo que pretendemos es excluirlo

¢ se puede excluir Dockerfile también, pero solo se ignorara en las instrucciones COPY y ADD

FROM

e FROM <imagen>[:tag|@digest] [AS <nombre>]

o si no se especifica tag se usara latest
o el digest es el SHA256 de la imagen: FROM busybox@sha256:3e8...0e7

e primera instruccién del Dockerfile (con excepcién de ARG)

multistage

uso de mas de una imagen Docker para realizar la tarea

¢ uso de 2 0 mas FROM en el Dockerfile
¢ la imagen del Ultimo FROM es la que prevalece, todas las anteriores son descartadas
e es posible «traspasar» ficheros de un fase a otra con un pardmetro en el comando COPY
o COPY —from=0 ...
o 0 haria referencia a la primera imagen usada, también se puede hacer referencia a través del
nombre asignado en AS

RUN

ejecucién de comandos en la imagen que estamos construyendo

¢ RUN <comando> - comando es pasado como parametro a la shell del sistema:
o linux: /bin/sh -c
o windows: cmd /s /c

e RUN [«ejecutable»,«pardmetrol»,«parametro2»]
o no se ejecuta shell (o para cambiar la shell o entornos sin shell)

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 12:09

14/02/2026 12:09 3/4 [Docker SecDevOps] Capitulo 2 : Dockerfile

o vector JSON (comillas obligatorias)

¢ cada RUN genera una layer(capa)
e uso de | (pipe) para redirigir la salida de un ejecutable a otro

CMD

o tener en cuenta que si falla la ejecucién del primero, pero no del segundo, la ejecucién se dara por

buena

o se puede usar set -o pipefail para evitar este comportamiento (aunque no todos los shell lo

soportan)

o RUN [«/bin/bash», «-c»,«set -o pipefail && wget ..»]

ejecucién en tiempo de creacién del container

proveer de valores por defecto
los parametros se pasarian a ENTRYPOINT
entre esos valores se puede incluir un ejecutable
3 formas:
o CMD [«ejecutable»,«paraml»,«param2»]
o CMD [«paraml»,«param2»,«param3»] « parametros afladidos a ENTRYPOINT (también debe

estar expresado como vector JSON)

o CMD comando paraml param2 « el comando se ejecuta a través de la shell
para asegurarse la ejecucién de un programa hay que combinar ENTRYPOINT con CMD
si se pasan parametros en el docker run, estos sobreescriben los especifiados en el CMD

ENTRYPOINT

es el comando recomendable para definir el comando principal de una imagen

¢ 2 formas:

o ENTRYPOINT [«ejecutable»,«paraml1»,«param2»]
o ENTRYPOINT comando paraml param2 « comando ejecutado a través de la shell

* es posible sobrescribir el ENTRYPOINT de una imagen a través del parametro --entrypoint en docker

o docker run --%entrypoint "/bin/1ls" debian -al /root'' * -al y /root son

parametros pasados al nuevo **entrypoint** * importante que la Ultima
instruccioén ejecutada por el ENTRYPOINT se convierta en en el proceso con
PID 1 del contenedor (a través de la instruccién **exec**) para que reciba
las seflales Unix enviadas al contenedor.<code bash> #!/bin/bash set -e if
["$1" = 'postgres' 1; then chown -R postgres "$PGDATA" if [-z "$(1ls -A
"$PGDATA")" 1; then gosu postgres initdb fi exec gosu postgres "$@" fi
exec "$@"</code> * como regla general, debemos tener en cuenta: * cada
Dockerfile debe tener definido un CMD o ENTRYPOINT * cuando queremos usar
un contenedor como un fichero ejecutable, debemos usar ENTRYPOINT * CMD se
deberia usar para definir los parametros por defecto para ENTRYPOINT o
para ejecutar un comando de apoyo para la creacién del contenedor, pero no
el comando que ejecuta el proceso final del mismo == LABEL afiade metadatos
a una imagen * ''LABEL key=value [key2=value2]'' * se pueden crear varias
etiquetas o una Unica separando valores * etiquetas con el mismo nombre,
prevalece la uUltima == EXPOSE indica puertos y protocolos donde escuchara
el contenedor * con **docker run** podemos mapear los puertos con: * ''-p
host:contenedor'' * ''-P'' : mapea los puertos indicados en EXPOSE a
puertos no privilegiados aleatorios * los contenedores que comparten red,
no necesitan mapear puertos, tienen acceso a todos ellos. == ADD copia

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:
29/01/2019
06:21

info:libros:docker-sec-dev-ops:cap2 https://miguelangel.torresegea.es/wiki/info:libros:docker-sec-dev-ops:cap2?rev=1548771673

From:

https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link: e
https://miguelangel.torresegea.es/wiki/info:libros:docker-sec-dev-ops:cap2?rev=1548771673 J%; '|-
i

Last update: 29/01/2019 06:21

ficheros, directorios o ficheros remotos al directorio de destino en la
imagen docker * ''ADD <src>... <dest>'' * '"'ADD ["<src>",... "<dest>"]
obligatorio en el caso de que algin elemento contenga espacios * origen
puede ser absoluto o relativo al contexto * si es un directorio, copiara
el contenido * destino puede ser absoluto o relativo al WORKDIR * si acaba
en **/** copia el fichero origen con el mismo nombre * origen permite
caracteres comodin usando las reglas de filepath.Match del lenguaje Go:
*dokokok - kk7%% * gi origen estd en un formato de compresion reconocido
(gzip,bzip,xz) se descomprime automaticamente en destino * si origen es
una URL a un archivo comprimido, no se descomprime, solo se copia. * si se
especifican miltiples origenes o comodines, destino ha de ser directorio
(y acabar en /) * si destino no existe, se creara, con los directorios
intermedios necesarios * todos los ficheros y directorios serdan creados
con UID/GID 0 * en caso de URLs a ficheros remotos, los permisos se
establecen a 600 * ADD no tiene sistema de autentificacion implementado,
se deberia usar RUN**

== COPY

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 12:09

https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:libros:docker-sec-dev-ops:cap2?rev=1548771673

	[Docker SecDevOps] Capítulo 2 : Dockerfile
	build
	directivas
	ENV
	.dockerignore
	FROM
	multistage

	RUN
	CMD
	ENTRYPOINT

