14/02/2026 12:07 1/6 [Docker SecDevOps] Capitulo 2 : Dockerfile

[Docker SecDevOps] Capitulo 2 : Dockerfile

e # comentarios o directivas
e INSTRUCCION argumentos : por convencidn, instruccién en mayusculas
e primera instruccién: FROM (o ARG)

build

e docker build o docker image build
o -t <nombre imagen>[:tag]
o -f <nombre_fichero Dockerfile>

directivas

antes de la instruccion FROM

* no repeticiones

formato concreto: # directiva=valor (respetando espacios) - si no, es tratado como un comentario
¢ directivas soportadas actualmente:

o escape : caracter de escape en ficheros Dockerfile. Soporta \y °

ENV

¢ variables de entorno
e ENV var=valor
e ENV var=valor var2=valor2 var3=$var2 « produce una Unica capa de caché
e ENV var valor
¢ se referencian con el signo $ 0 ${}
e funcionalidades tipo bash:
o ${var:-texto} : si var tiene valor propio (esta inicializada) lo devuelve, si no, devuelve texto
o ${var:+texto} : si var tiene valor propio, devuelve la cadena texto, si no, devuelve vacio
¢ se pueden usar en:
o ADD
o COPY
o ENV
o EXPOSE
o FROM
o ONBUILD
o LABEL
o STOPSIGNAL
o USER
o VOLUME
o WORKDIR
¢ son de tipo global (afecta a todas las imagenes que desciendan donde fueron definidas)
e también llegan al contenedor
¢ se pueden sobrescribir con el parametro -env en docker run

.dockerignore

e se procesa al mismo tiempo que se procesa el contexto en el build de una imagen

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last

gg?(?ltfz:ow info:libros:docker-sec-dev-ops:cap2 https://miguelangel.torresegea.es/wiki/info:libros:docker-sec-dev-ops:cap2?rev=1548862202

07:30

e ignora todos los archivos / directorios que estén especificados

uso de comodines: *, 2, !
comentarios: #

e importancia del orden de criterio de exclusion:

*.md
'README . md
*.md
'README* . md

README -secret.md

*.md
README -secret.md
IREADME* . md

o el primer ejemplo excluye todos los ficheros .MD excepto el README.md

o el segundo excluye todos los ficheros .MD excepto los README*.md, aunque el README-secret.md
también quedaria excluido

o el tercer ejemplo es una mala construccién por el orden de las instrucciones, ya que el fichero
README-secret.md quedaria incluido, cuando lo que pretendemos es excluirlo

¢ se puede excluir Dockerfile también, pero solo se ignorara en las instrucciones COPY y ADD

FROM

e FROM <imagen>[:tag|@digest] [AS <nombre>]

o si no se especifica tag se usara latest
o el digest es el SHA256 de la imagen: FROM busybox@sha256:3e8...0e7

e primera instruccién del Dockerfile (con excepcién de ARG)

multistage

uso de mas de una imagen Docker para realizar la tarea

¢ uso de 2 0 mas FROM en el Dockerfile
¢ la imagen del Ultimo FROM es la que prevalece, todas las anteriores son descartadas
e es posible «traspasar» ficheros de un fase a otra con un pardmetro en el comando COPY
o COPY —from=0 ...
o 0 haria referencia a la primera imagen usada, también se puede hacer referencia a través del
nombre asignado en AS

RUN

ejecucién de comandos en la imagen que estamos construyendo

¢ RUN <comando> - comando es pasado como parametro a la shell del sistema:
o linux: /bin/sh -c
o windows: cmd /s /c

e RUN [«ejecutable»,«pardmetrol»,«parametro2»]
o no se ejecuta shell (o para cambiar la shell o entornos sin shell)

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 12:07

14/02/2026 12:07 3/6 [Docker SecDevOps] Capitulo 2 : Dockerfile

o vector JSON (comillas obligatorias)
¢ cada RUN genera una layer(capa)
e uso de | (pipe) para redirigir la salida de un ejecutable a otro
o tener en cuenta que si falla la ejecucién del primero, pero no del segundo, la ejecucién se dara por
buena
o se puede usar set -o pipefail para evitar este comportamiento (aunque no todos los shell lo
soportan)
o RUN [«/bin/bash», «-c»,«set -o pipefail && wget ..»]

CMD

ejecucién en tiempo de creacién del container

proveer de valores por defecto
¢ |os pardmetros se pasarian a ENTRYPOINT
entre esos valores se puede incluir un ejecutable
3 formas:
o CMD [«ejecutable»,«paraml»,«param2»]
o CMD [«paraml»,«param2»,«param3»] « parametros afladidos a ENTRYPOINT (también debe
estar expresado como vector JSON)
o CMD comando paraml param2 « el comando se ejecuta a través de la shell
e para asegurarse la ejecucién de un programa hay que combinar ENTRYPOINT con CMD
si se pasan parametros en el docker run, estos sobreescriben los especifiados en el CMD

ENTRYPOINT

es el comando recomendable para definir el comando principal de una imagen

¢ 2 formas:
o ENTRYPOINT [«ejecutable»,«paraml1»,«param2»]
o ENTRYPOINT comando paraml param2 « comando ejecutado a través de la shell
* es posible sobrescribir el ENTRYPOINT de una imagen a través del parametro --entrypoint en docker
run
o docker run --entrypoint «/bin/ls» debian -al /root
= -al y /root son pardmetros pasados al nuevo entrypoint
e importante que la Ultima instruccién ejecutada por el ENTRYPOINT se convierta en en el proceso con PID
1 del contenedor (a través de la instrucciéon exec) para que reciba las sefiales Unix enviadas al
contenedor.

#!/bin/bash
-e
"$1" = 'postgres' |;
chown -R postgres "$PGDATA"
-z "$(ls -A "$PGDATA")" |;
gosu postgres initdb

exec gosu postgres "$@"

exec "$@"

e como regla general, debemos tener en cuenta:
o cada Dockerfile debe tener definido un CMD o ENTRYPOINT
o cuando queremos usar un contenedor como un fichero ejecutable, debemos usar ENTRYPOINT

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last
update:

30/01/2019

07:30

info:libros:docker-sec-dev-ops:cap2 https://miguelangel.torresegea.es/wiki/info:libros:docker-sec-dev-ops:cap2?rev=1548862202

o CMD se deberia usar para definir los pardmetros por defecto para ENTRYPOINT o para ejecutar un
comando de apoyo para la creacién del contenedor, pero no el comando que ejecuta el proceso
final del mismo

LABEL

afade

metadatos a una imagen

LABEL key=value [key2=value2]
se pueden crear varias etiquetas o una Unica separando valores
etiquetas con el mismo nombre, prevalece la Ultima

EXPOSE

indica

puertos y protocolos donde escuchard el contenedor

con docker run podemos mapear los puertos con:
o -p host:contenedor
o -P: mapea los puertos indicados en EXPOSE a puertos no privilegiados aleatorios
o los contenedores que comparten red, no necesitan mapear puertos, tienen acceso a todos ellos.

ADD

copia ficheros, directorios o ficheros remotos al directorio de destino en la imagen docker

ADD <src>.. <dest>
ADD [«<src>»,.. «<dest>»] : obligatorio en el caso de que algln elemento contenga espacios
origen puede ser absoluto o relativo al contexto
o si es un directorio, copiara el contenido
destino puede ser absoluto o relativo al WORKDIR
o si acaba en / copia el fichero origen con el mismo nombre
origen permite caracteres comodin usando las reglas de filepath.Match del lenguaje Go: *, ?
si origen estd en un formato de compresién reconocido (gzip,bzip,xz) se descomprime automaticamente
en destino
o si origen es una URL a un archivo comprimido, no se descomprime, solo se copia.
si se especifican multiples origenes o comodines, destino ha de ser directorio (y acabar en /)
si destino no existe, se creara, con los directorios intermedios necesarios
todos los ficheros y directorios seran creados con UID/GID 0
en caso de URLs a ficheros remotos, los permisos se establecen a 600
o ADD no tiene sistema de autentificacién implementado, se deberia usar RUN

COPY

copiar ficheros y directorios

COPY <src>.. <dest>
COPY [«<src>».. «<dest>»]
NO descomprime archivos

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 12:07

14/02/2026 12:07 5/6 [Docker SecDevOps] Capitulo 2 : Dockerfile

¢ NO copia ficheros remotos
e Permite copiar ficheros entre imagenes (multistage)
o COPY —from=..

VOLUME

crea un punto de montaje con el nombre dado

VOLUME <path> [<path>..]
VOLUME [«<path>» [, «<path>»]]
Los volumenes se montan en tiempo de ejecucién del contenedor
en ese momento se le puede indicar a Docker donde montarlo:
o con el pardmetro -v 0 —volume o —mount especificando un directorio local
o sin parametro, ubica el volumen en /var/lib/docker/volumes/<nombre_volumen>/ data
= para averiguar el nombre del volumen asociado:

docker container inspect 76ce590930b0 --format "{{ .Mounts }}"

= en mac, el punto de montaje no estd en la maquina Apple, si no en el sistema de ficheros de
la maquina virtual que Docker usa por debajo

USER

establece el usuario (UID) y grupo (GID) del usuario que ejecuta los comandos de las instrucciones RUN, CMD,
ENTRYPOINT

e USER <user>

e USER <UID>

e USER <UID>[:<GID>]

¢ por defecto se ejecutan como root

e se puede usar mas de una vez en el mismo Dockerfile, aunque se recomienda minimizar su uso por su
repercusién en las capas de la imagen

e también se puede usar sudo, aunque se desaconseja su uso (por temas relacionados con el envio de
sefiales y la emulacién de termianles) -» recomendado gosu

e también se puede especificar el usuario en el momento de ejecucién del contenedor con el pardmetro -u
o-—user

WORKDIR

establece el directorio de trabajo para los comandos RUN, CMD, ENTRYPOINT, COPY, ADD

e WORKDIR <path> « sin/final
¢ ¢| directorio es creado inmediatemente
e pueden ser absolutos (recomendado) o relativos (al Gltimo WORKDIR)

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:

Last update: 30/01/2019 07:30

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:libros:docker-sec-dev-ops:cap2?rev=1548862202

Last
update:
30/01/2019
07:30

info:libros:docker-sec-dev-ops:cap2 https://miguelangel.torresegea.es/wiki/info:libros:docker-sec-dev-ops:cap2?rev=1548862202

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 12:07

	[Docker SecDevOps] Capítulo 2 : Dockerfile
	build
	directivas
	ENV
	.dockerignore
	FROM
	multistage

	RUN
	CMD
	ENTRYPOINT
	LABEL
	EXPOSE
	ADD
	COPY
	VOLUME
	USER
	WORKDIR

