13/12/2025 16:42 1/2 [Docker SecDevOps] Capitulo 3 : Imagenes

[Docker SecDevOps] Capitulo 3 : Imagenes

intro

¢ casi cada comando del fichero Dockerfile genera una capa en la imagen que se esta generando

¢ cada capa es de solo lectura, inmutable

e cada capa es cacheada, de manera que se genera la primera vez y después, se utiliza (ahorrando
proceso y espacio)

¢ se puede consultar las capas de una imagen con docker image history <imagen>

¢ cuando se lanza un contenedor, se crea una nueva capa, esta de lectura/escritura

manejo de imagenes

¢ docker image
o build
o history
o import
o inspect
o |load
o ls
o prune
o pull
o push
°orm
o save
o tag

pull

descarga del repositorio (por defecto, hub.docker.com) la imagen solicitada

e docker image pull <imagen> (latest)
e docker image pull <imagen>:<version>

push

publicar imagen en repositorio

e por defecto, se hard sobre el registro oficial (hub.docker.com) y para ello hace falta tener una cuenta y
estar autenticado:
o docker login -u <username>
o docker info : para saber con que cuenta estamos logeados (en caso de tener mas de una)
o para publicar una imagen, el formato del nombre de la imagen ha de ser:
<usuario>/<imagen>:<version>

registro

¢ cbdigo abierto bajo licencia apache

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/



Last update: 31/01/2019

04:33 info:libros:docker-sec-dev-ops:cap3 https://miguelangel.torresegea.es/wiki/info:libros:docker-sec-dev-ops:cap3

e aplicacién servidor sin estado y altamente escalable

¢ al hacer un pull sobre un registro (que no se sea por defecto), la imagen debe tener el formato
<registro>/<usuario>/<imagen>:<version>

¢ para lanzar un registro local: docker container run -d -p 5000:5000 -rm —name registry
registry:2

e el registro ademas ofrece notificaciones webhook, API-REST, etc...

Limpieza de imagenes

e docker image rm <imagen>: borrado individual
e docker image prune : borrado de las imagenes colgadas (dangling) - cuando creamos imagenes sin
especificar version (latest) y se hacen modificaciones, las anteriores quedan colgadas.
o -a:todas las imagenes que no son usadas
¢ las imagenes referenciadas por contenedores, corriendo o no, no pueden ser borradas

buenas practicas creando imdagenes

e usar imagenes pequefas: elegir una imagen base lo mas pequefia posible
o alpine : distribucién linux minimalista
o busybox : https://hub.docker.com/ /busybox
o Scratch : imagen de 0 bytes
e usar imagenes especializadas : en lugar de «construirlas» nosotros mismos partiendo una imagen
generalista
e especificar la versién de la imagen base
e reducir el nimero de instrucciones en los ficheros Dockerfile
¢ borrar los ficheros que no se necesitan
¢ aprovechar la multifase
e reducir el nUmero de ficheros enviado al demonio docker : .dockerignore
¢ el orden (de las instrucciones en Dockerfile) importa : dejar las instrucciones que se supone no variaran
al principio del fichero. Docker invalida una capa (y todas las siguientes) cuando hay un cambio, asi que
ese cambio que afecta a esa capa, afecta a todas las herederas de la misma
e reusar imagenes

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/info:libros:docker-sec-dev-ops:cap3

Last update: 31/01/2019 04:33

https://miguelangel.torresegea.es/wiki/ Printed on 13/12/2025 16:42


https://hub.docker.com/_/busybox
https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:libros:docker-sec-dev-ops:cap3

	[Docker SecDevOps] Capítulo 3 : Imágenes
	intro
	manejo de imágenes
	pull
	push

	registro
	Limpieza de imágenes
	buenas prácticas creando imágenes



