
14/02/2026 15:10 1/6 git (libro Amazon)

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Git (libro Amazon)
devops, cursos, git

uso básico

configuración inicial

git config –global user.name <nombre>
git config –global user.email <email>
git config –global core.editor <EDITOR>
git condig –global push.default {matching|simple|current|nothing} : ver sincronizando
directorios
git config –global core.excludesFile <FILE> : fichero global de exclusión de ficheros
git config –list

iniciando repositorio

git init
git clone <http|https|ssh>
git config –list : en el directorio del repositorio te da info sobre el mismo

trabajando con Git

Directorio de trabajo → Index → Head
git status
git add

git add -u : añade al Index los archivos que deben ser borrados
git add -A = git add -u & git add .

git commit
git commit -m «<COMENTARIO>»
git commit -a : git add -A & git commit

sincronizando repositorios

git clone
git remote -v[vv] : lista información de los repositorios remotos

git remote add <ALIAS> <DIRECCION_REPOSITORIO>
git remote rm <ALIAS>
git remote rename <ALIAS> <NUEVO_ALIAS>

git pull <ALIAS> <RAMA>
git pull = git fetch & git merge
ALIAS por defecto es origin
RAMA pode defecto es master

git push <ALIAS> <RAMA>
hemos de estar al día en nuestro respositorio local para poder hacer un push
comportamiento por defecto v2.x : simple en lugar de matching

simple: solo sube rama activa a la rama de la que has hecho pull, si no tiene el mismo
nombre da error
matching: sube todas las ramas, si no existe la crea
current: sube los cambios de la rama activa a la rama del mismo nombre, si no existe, se

https://miguelangel.torresegea.es/wiki/tag:devops?do=showtag&tag=devops
https://miguelangel.torresegea.es/wiki/tag:cursos?do=showtag&tag=cursos
https://miguelangel.torresegea.es/wiki/tag:git?do=showtag&tag=git

Last update: 03/09/2018 06:03 info:libros:git https://miguelangel.torresegea.es/wiki/info:libros:git?rev=1535979827

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 15:10

crea
nothing: test/debug
upstream : idem simple pero no da error si tiene otro nombre

.gitignore

https://github.com/github/gitignore

viendo el historial

git log
parámetros:

-#_entradas
–oneline
-p : más detalle, con diff
–graph

borrado de archivos

git rm <ARCHIVO> : borra archivo + borra archivo del Index
git rm –cached <ARCHIVO> : borra solo del Index
git reset HEAD <ARCHIVO> : idem anterior

arrepentimientos

rehacer un commit

git commit –amend : si no hay modificación de archivos (no has modificado en Index), edita el
comentario
si has olvidado algún archivo, lo añades y ejecutas la instrucció anterior

deshacer cambios de un archivo

git checkout – <ARCHIVO> : deshace los cambios que has hecho, lo recupera del HEAD

volviendo al pasado

git reset –hard <HASH_COMMIT>:
deshace commits posteriores al indicado
recupera los archivos del commit indicado
DESAPARECEN TODOS LOS CAMBIOS POSTERIORES
se recomienda hacer un PUSH o ejecutarlo sobre otra rama

resolviendo conflictos

hay commits posteriores en tu rama, error al hacer push
hacer pull
resolver conlictos, si los hubiese (primero aparece lo tuyo, entre <<<<< y ==== y lo que hay en
el remoto está entre ===== y >>>>>>

https://github.com/github/gitignore

14/02/2026 15:10 3/6 git (libro Amazon)

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

hacer push

viendo/recuperando archivos antiguos

git show <HASH_COMMIT>
git show <HASH_COMMIT>:path/to/file
git show <HASH_COMMIT>:path/to/file > archivo_copia

más usos de Git

organización

no hay reglas de como organizar tu trabajo, aunque si que hay reglas de como NO hacerlo… se ha de organizar
para que el trabajo de los otros no te distraiga

qué poner en el directorio principal

README.md : fichero mostrado en la página principal de Github. Explicar en pocas palabras de que va el
proyecto, como instalarlo, prerrequisitos, licencia, navegación por el repositorio
INSTALL.md : instrucciones detalladas de instsalación
.gitignore
LICENSE
TODO

estructura habitual con directorio test

Git tiene una estructura plana (el todo es tratado en un conjunto, al contrario que CVS o Subversion, que
podían tratar un directorio como un proyecto independiente)
Git permite trabajar con submódulos para emular este comportamiento. Con sentido en proyectos de
terceros del que depende tu proyecto o proyectos/equipos muy grandes

git submodule add <URL_REPOSITORIO> <DIRECTORIO> + cd <DIRECTORIO> + git
submodule init + git submodule update + git pull

flujos de trabajo

ramas

Una rama es un nombre a un commit específico y todos los commits que son antecesores del mismo

ramas ligeras: etiquetas

git tag <etiqueta> : crea etiqueta, asociada a un commit, para marcar algún tipo de hito. De
caracter local

git tag -a <etiqueta> : añade una nota desde editor, o -m «comentario» inline
git show <etiqueta> : mostrará la nota

git tag
git describe : indica el camino desde la última etiqueta a un commit concreto
git push –tags

https://git-scm.com/book/en/v2/Git-Tools-Submodules

Last update: 03/09/2018 06:03 info:libros:git https://miguelangel.torresegea.es/wiki/info:libros:git?rev=1535979827

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 15:10

creando y fusionando ramas

git checkout -b <RAMA> : git branch <RAMA> + git checkout <RAMA>
al hacerlo, sobreescribe los cambios que no esten pasados a commit.
si se quieren conservar sin realizar el commit, se pued hacer un git stash : almacen temporal
para recuperar, git stash apply –index
para establecer un origen por defecto (upstream): git push –set-upstream
<ALIAS_REMOTO> <RAMA>
git branch nos indica las ramas y en la que estamos (marcada con un *)
git branch –all nos muestra todas las ramas

fusionando

git checkout <RAMA_QUE_RECIBIRÁ_LA_FUSION>1.
git pull <ALIAS_REMOTE> <RAMA_QUE SE FUSIONARÁ2.
una vez fusionadas correctamente, se podría descartar la rama «muerta»:3.

git branch -d <RAMA_MUERTA> : en local1.
git push <ALIAS_REMOTE> :<RAMA_MUERTA> : actualizar el borrado en el repositorio remoto2.

git checkout <ARCHIVO> : recupera desde master (por defecto) el fichero a la rama actual

los misterios del rebase

reescritura de historia (OJO con los push/pull)

quién hizo qué

git log –pretty=short : resumen de commits, autores, fechas…
git blame : cambios a nivel de fichero

Usando Git como los profesionales: GitHub

github pages

páginas estáticas
originalmente, rama gh-pages, ahora desde la raiz del proyecto o el subdirectorio docs
se puede configurar en Settings → GitHub pages → Automatic Page Generator (deja elegir algunas
plantillas). El generador coge el fichero README.md y lo parsea a HTML, y genera un domino
usuario.github.io/proyecto que sirve las páginas HTML

hooks

ganchos o eventos que se activan cuando se produce alguna acción → petición REST (debidamente formada)

Settings → WebHooks & Services → Configure services
se activan al hacer un push a GitHub
tipos de servicios:

integración continua
mensajería
entrega continua

14/02/2026 15:10 5/6 git (libro Amazon)

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

sistemas de trabajo en grupo
análisis del código

cliente GitHub (hub)

Hooks, ejecutando código tras una orden Git

estructura repositorio

branches : sin uso actualmente
config,HEAD,refs, objects : información dinámica
el resto de ficheros se copian de una plantilla:

hooks, description,branches,info
la plantilla está en /usr/share/git-core/templates/ y se puede modificar
también se puede usar un directorio alternativo de plantilla con el parámetro –template con los
comandos clone o init

.git/info/exclude → idem .gitignore pero solo afecta a la copia local

paso a paso

.git/objects : estructura directorios con los objetos git
crea un SHA1 a partir del contenido y almacena como BLOB el fichero en la zona temporal1.
almacena el nombre de fichero (o ficheros contenidos en la zona temporal) en un arbol2.
se calcula el SHA1 del arbol y se almacena en .git/objects3.

un arbol puede apuntar a otros árboles1.
al hacer un commit, se crear un tercer tipo de objeto, que contiene enlaces a un árbol (el de más4.
alto nivel) y metadatos

Last update: 03/09/2018 06:03 info:libros:git https://miguelangel.torresegea.es/wiki/info:libros:git?rev=1535979827

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 15:10

refiriéndonos a objetos en git

se puede usar git show para mostrar cualquier tipo de objeto git (BLOB,ARBOL,COMMIT)
.git/refs guarda referencias a los objetos
git show master^{tree} : se usa ^ para qualificar aquello que le precede, aunque solo hay {tree}
git show master~1 : ~1 indica el ancestro justo anterior
git show master~4^{tree}

comandos de alto y bajo nivel (fontanería y loza)

fontanería : comandos bajo nivel
loza: comandos alto nivel (usuario)

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/info:libros:git?rev=1535979827

Last update: 03/09/2018 06:03

https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/info:libros:git?rev=1535979827

	Git (libro Amazon)
	uso básico
	configuración inicial
	iniciando repositorio
	trabajando con Git
	sincronizando repositorios
	.gitignore
	viendo el historial
	borrado de archivos
	arrepentimientos
	rehacer un commit
	deshacer cambios de un archivo
	volviendo al pasado

	resolviendo conflictos
	viendo/recuperando archivos antiguos

	más usos de Git
	organización
	qué poner en el directorio principal
	estructura habitual con directorio test
	flujos de trabajo
	ramas
	ramas ligeras: etiquetas
	creando y fusionando ramas
	fusionando

	los misterios del rebase
	quién hizo qué

	Usando Git como los profesionales: GitHub
	github pages
	hooks
	cliente GitHub (hub)

	Hooks, ejecutando código tras una orden Git
	estructura repositorio
	paso a paso

	refiriéndonos a objetos en git
	comandos de alto y bajo nivel (fontanería y loza)

