01/01/2026 15:43 1/6 brace expansion

brace expansion

http://wiki.bash-hackers.org/syntax/expansion/brace

{stringl,string2,...,stringN}
{<START>. .<END>}

{<START>. .<END>. .<INCR>} (Bash 4)

<PREAMBLE>{........ }
{........ }<POSTSCRIPT>
<PREAMBLE>{........ }<POSTSCRIPT>

Brace expansion is used to generate arbitrary strings. The specified strings are used to generate all possible
combinations with the optional surrounding preambles and postscripts.

Usually it's used to generate mass-arguments for a command, that follow a specific naming-scheme.

'EI It is the very first step in expansion-handling, it's important to understand that. When you use
echo {a,b}$PATH

then the brace expansion does not expand the variable - this is done in a later step. Brace expansion just
makes it being:

echo a$PATH b$PATH

Another common pitfall is to assume that a range like {1..200} can be expressed with variables using
{$a..$b}. Due to what | described above, it simply is not possible, because it's the very first step in doing
expansions. A possible way to achieve this, if you really can't handle this in another way, is using the eval
command, which basically evaluates a commandline twice:

eval echo {$a..$b}

For instance, when embedded inside a for loop :

for i in $(eval echo {$a..$b})

This requires that the entire command be properly escaped to avoid unexpected expansions. If the sequence
expansion is to be assigned to an array, another method is possible using declaration commands:

declare -a 'pics=(img{'"$a..$b"'}.png)"'; mv "${pics[@]}" ../imgs

This is significantly safer, but one must still be careful to control the values of $a and $b. Both the exact
quoting, and explicitly including «-a» are important.

The brace expansion is present in two basic forms, string lists and ranges.

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

http://wiki.bash-hackers.org/syntax/expansion/brace

Last update: 23/05/2020 15:37 linux:bash:braceexpansion https://miguelangel.torresegea.es/wiki/linux:bash:braceexpansion

It can be switched on and off under runtime by using the set builtin and the option -B and +B or the long option
braceexpand. If brace expansion is enabled, the stringlist in SHELLOPTIONS contains braceexpand

String lists

{stringl,string2,...,stringN}

Without the optional preamble and postscript strings, the result is just a space-separated list of the given
strings:

$ echo {I,want,my,money,back}
I want my money back

With preamble or postscript strings, the result is a space-separated list of all possible combinations of
preamble, specified strings and postscript:

$ echo {I,want,my,money,back}
I want my money back

$ echo {I,want,my,money,back}
I want my_ money back

$ echo {I,want,my,money,back}-
~I- want- my- money- back-

The brace expansion is only performed, if the given string list is really a list of strings, i.e. if there's minimum

one «,» (comma)! Something like {money} doesn't expand to something special, it's really only the text
«{money}».

Ranges

{<START>. .<END>}

Brace expansion using ranges is written giving the startpoint and the endpoint of the range. This is a «sequence
expression», The sequences can be of two types

¢ integers (optionally zero padded, optionally with a given increment)
e characters

$ echo {5..12}
567 8910 11 12

$ echo {c..k}
cdefghiijk

When you mix these both types, brace expansion is not performed:

$ echo {5..k}
{5..k}

When you zeropad one of the numbers (or both) in a range, then the generated range is zeropadded, too:

https://miguelangel.torresegea.es/wiki/ Printed on 01/01/2026 15:43

01/01/2026 15:43 3/6 brace expansion

$ echo {01..10}
01 02 03 04 05 06 07 08 09 10

There's a chapter of Bash 4 brace expansion changes at the end of this article.

Similar to the expansion using stringlists, you can add preamble and postscript strings:

$ echo 1.{0..9}
1.0 1.1 1.21.31.41.51.6 1.7 1.8 1.9

$ echo ---{A..E}---
---A--- ---B--- --- C--- ---D--- ---E---

Combining and nesting

When you combine more brace expansions, you effectively use a brace expansion as preamble or postscribt for
another one. Let's generate all possible combinations of uppercase letters and digits:

$ echo {A..Z}{0..9}

A@ Al A2 A3 A4 A5 A6 A7 A8 A9 BO Bl B2 B3 B4 B5 B6 B7 B8 B9 CO C1 C2 C3 C4 C5 C6
C7 C8 C9 DO D1 D2 D3 D4 D5 D6 D7 D8 D9 EO E1 E2 E3 E4 E5 E6 E7 E8 E9 FO F1 F2 F3
F4 F5 F6 F7 F8 F9 GO Gl G2 G3 G4 G5 G6 G7 G8 G9 HO H1 H2 H3 H4 H5 H6 H7 H8 H9 IO
I1 I2 I3 I4 15 I6 I7 I8 I9 JO J1 J2 33 J4 15 J6 17 18 J9 KO K1 K2 K3 K4 K5 K6 K7
K8 K9 LO L1 L2 L3 L4 L5 L6 L7 L8 L9 MO M1 M2 M3 M4 M5 M6 M7 M8 M9 NO N1 N2 N3 N4
N5 N6 N7 N8 N9 00 01 02 03 04 05 06 07 08 09 PO P1 P2 P3 P4 P5 P6 P7 P8 P9 Q0 Q1
02 Q3 Q4 Q5 Q6 Q7 Q8 Q9 RO R1 R2 R3 R4 R5 R6 R7 R8 R9 SO S1 S2 S3 S4 S5 S6 S7 S8
S9 TO T1 T2 T3 T4 T5 Te T7 T8 T9 UO Ul U2 U3 U4 U5 U6 U7 U8 U9 VO V1 V2 V3 V4 V5
V6 V7 V8 V9 WO W1 W2 W3 W4 W5 We W7 W8 W9 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 YO Y1 Y2
Y3 Y4 Y5 Y6 Y7 Y8 Y9 Z0 Z1 Z2 Z3 7Z4 75 76 Z7 78 79

Hey.. that saves you writing 260 strings!
Brace expansions can be nested, but too much of it usually makes you losing overview a bit 'EI
Here's a sample to generate the alphabet, first the uppercase letters, then the lowercase ones:

$ echo {{A..Z},{a..z}}
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijk1l1mnop

qgqrstuvwxyz

Common use and examples

Massdownload from the Web

In this example, wget is used to download documentation that is split over several numbered webpages.

wget won't see your braces. It will see 6 different URLs to download.
wget http://docs.example.com/documentation/slides part{1,2,3,4,5,6}.html

Of course it's possible, and even easier, to do that with a sequence:

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Last update: 23/05/2020 15:37 linux:bash:braceexpansion https://miguelangel.torresegea.es/wiki/linux:bash:braceexpansion

wget http://docs.example.com/documentation/slides part{l..6}.html

Generate a subdirectory structure

Your life is hard? Let's ease it a bit - that's what shells are here for.

mkdir /home/bash/test/{foo,bar,baz,cat,dog}

Generate numbers with a prefix 001 002 ...

e Using a prefix:

for i in 0{1..9} 10; do printf "%s\n" "$i";done

If you need to create words with the number embedded, you can use nested brace:

printf "S%s\n" img{00{1..9},0{10..99},{100..999}}.png
¢ Formatting the numbers with printf:

echo $(printf "img%02d.png " {1..99})

See the text below for a new Bash 4 method.

Repeating arguments or words

somecommand -v -V -V -V -V
Can be written as
somecommand -v{,,,,}

...which is a kind of a hack, but hey, it works.

<div round info>

More fun

The most optimal possible brace expansion to expand n arguments of course consists of n's prime factors. We
can use the «factor» program bundled with GNU coreutils to emit a brace expansion that will expand any

number of arguments.

function braceify {
[[$1 == +([[:digit:]]) 11 || return
typeset -a a
read -ra a < <(factor "$1")

eval "echo $(printf '{$(printf ,%%.s {1..%s})}' "${al@]:1}")"

}

printf 'eval printf "$arg"%s' "$(braceify 1000000)"

https://miguelangel.torresegea.es/wiki/

Printed on 01/01/2026 15:43

01/01/2026 15:43 5/6 brace expansion

«Braceify» generates the expansion code itself. In this example we inject that output into a template which
displays the most terse brace expansion code that would expand «$arg» 1,000,000 times if evaluated. In this
case, the output is:

eval printf

"$arg"{”}{"}{II}{"}{"}{"}{”"’}{'II"}{”’"}{'l"’}{""'}{"”’}

</div>

New in Bash 4.0

Zero padded number expansion

Prefix either of the numbers in a numeric range with 0 to pad the expanded numbers with the correct amount of
zeros:

$ echo {0001..5}
0001 0002 0003 0004 0005

Increment

It is now possible to specify an increment using ranges:
{<START>. .<END>. .<INCR>}

<INCR> is numeric, you can use a negative integer but the correct sign is deduced from the order of <START>
and <END> anyways.

$ echo {1..10..2}
135709
$ echo {10..1..2}
10 8 6 4 2

Interesting feature: The increment specification also works for letter-ranges:
$ echo {a..z..3}

adgjmpsvy

See also

¢ Introduction to expansion and substitution

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/linux:bash:braceexpansion

Last update: 23/05/2020 15:37

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

https://miguelangel.torresegea.es/wiki/syntax:expansion:intro
https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/linux:bash:braceexpansion

Last update: 23/05/2020 15:37 linux:bash:braceexpansion https://miguelangel.torresegea.es/wiki/linux:bash:braceexpansion

https://miguelangel.torresegea.es/wiki/ Printed on 01/01/2026 15:43

	brace expansion
	String lists
	Ranges
	Combining and nesting
	Common use and examples
	Massdownload from the Web
	Generate a subdirectory structure
	Generate numbers with a prefix 001 002 ...
	Repeating arguments or words
	More fun

	New in Bash 4.0
	Zero padded number expansion
	Increment

	See also

