14/02/2026 07:06 1/5 Special Shell Variables & Parameter Substitution and Expansion

Special Shell Variables & Parameter Substitution
and Expansion

$ es utilizado para expansién de pardmetros y sustitucién de comandos

File descriptors

Special Shell Variables

variable|Significado

$0 Nombre del script que se estd ejecutando

$1 Pardmetro 1

$2 - $9 |Parametros del 2 al 9

${10} [Pardmetro 10

$# NUmero de parametros

«$*» Todos los pardmetros en 1 cadena, ha de llevar «
«$@» |Todos los pardametros

${#*} |NUmero de pardmetros pasados (;como $#?7)
${#@} |NUmero de pardmetros pasados (;como $#?7)

$? Valor de retorno

$$ ID de proceso del script (PID)

$- Flags pasados al script

$_ Ultimo argumento del comando anterior

$! PID del Ultimo trabajo ejecutado en background

Mirar también: http://wiki.bash-hackers.org/scripting/posparams

+ variables

e a=${VAR: -20}: asignar valor por defecto a a si VAR no existe (en este caso 20). Permite cadenas

arrays y tablas

¢ permite almacenar 1024 variables (de la 0 a la 1023)
e formato:
o setear: variable[n]="'valor'
o setear: variable=(valor valor valor valor)
o recuperar: VALOR=${variable[n]}
o recuperar: echo ${variable[n]}
o recuperar todos los valores: echo ${variable[*]}
e /via: http://ovtoaster.com/shell-scripts-en-linux-variables-y-parametros/

Parameter substitution and Expansion

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

http://wiki.bash-hackers.org/scripting/posparams
http://ovtoaster.com/shell-scripts-en-linux-variables-y-parametros/

Last update: 06/09/2018 08:27 linux:bash:shellvariables https://miguelangel.torresegea.es/wiki/linux:bash:shellvariables?rev=1536247632

expresion
${variable}
${parametro-valorPorDefecto}}

Significado
valor de variable, lo mismo que $variable
si el parametro no estd establecido, se le asigna el de por defecto

si el parametro no esta establecido o es vacio, se le asigna el de por defecto
(sobre variables solo?)

si el pardmetro no estd establecido, se le asigna el de por defecto (no
funciona sobre parametros posicionales -$1,$2...-)

si el parametro no esta establecido o es vacio, se le asigna el de por defecto
(no funciona sobre parametros posicionales -$1,$2...-)

comprueba si variable no estd establecida, mostrando el mensaje de errory
para la ejecucién del script

comprueba si variable no esta establecida o si es vacia, mostrando el
mensaje de error y para la ejecucién del script

si el parametro estd establecido, se le asigna OTHER, en otro caso, NULL
si el pardmetro estd establecido, se le asigna OTHER, en otro caso, NULL
devuelve todas las variables declaradas que empiecen por prefijoVariable
devuelve todas las variables declaradas que empiecen por prefijoVariable

${parametro:-valorPorDefecto}}

${parametro=valorPorDefecto}}

${parametro:=valorPorDefecto}}

${variable?MensajeError}

${variable:?MensajeError}

${variable+OTHER}
${variable:+OTHER}
${!prefijoVariable*}
${!prefijoVariable@}

para manipular, mirar shell expasion pattern matching

https://www.cyberciti.biz/tips/bash-shell-parameter-substitution-2.html

Operaciones sobre cadenas

/via: http://www.marqueta.org/cadenas-en-bash/

expresion
${#parametro}

Significado
longitud de parametro

Ejemplo
echo ${#string}

${cadena:posicién}

extrae subcadena desde posicidn

echo ${string:4}

${cadena:posicién:longitud}

extrae subcadena desde posicién la
longitud solicitada

echo ${string:4:7} ; echo
${string::-1}

${cadena#subcadena}

eliminar subcadena del principio de la
cadena

echo ${string#substring

${cadena%subcadena}

eliminar subcadena del final de la
cadena

echo ${string%substring

${cadena/sl/s2} reemplazar primera aparicion s1 por s2
${cadena//s1l/s2} reemplazar todas aparicion s1 por s2
reemplazar si hay coincidencia al
${cadena/#s1/s2} princpio de cadena
${cadena/%s1/s2} reemplazar si hay coincidencia al final

de cadena

${cadena##*separador}

extrae el Ultimo elemento de la ristra,
usando separador

data=foo,bar,baz;echo
${data#t#*,}

e $ a=foo; b=bar; [«$a»
en condicién importantes

e $ a=foo; b=bar; [«$a»
anterior

e $ a=foo; b=bar; [«$a»

* $ a=foto.jpg ; "$a"
pattern matching

e $ a=foo; b=bar;

[«$a»

= «$b»] && echo «iguales» || echo «diferentes» « espacios

«$b» 1 && echo

I= «$b»] && echo
* . gif && echo «no

= «foo» -a «$b» =

«algo falla» « -a equivale AND

«iguales» || echo «diferentes» «idem

«diferentes» || echo «iguales»
gif» || echo «gif» « doble corchetes hacen

«bar»] & echo «todo OK» || echo

https://miguelangel.torresegea.es/wiki/

Printed on 14/02/2026 07:06

https://www.cyberciti.biz/tips/bash-shell-parameter-substitution-2.html
http://www.marqueta.org/cadenas-en-bash/
https://miguelangel.torresegea.es/wiki/linux:bash:a_.gif

14/02/2026 07:06 3/5 Special Shell Variables & Parameter Substitution and Expansion

e $ a=foo; b=bar; [«$a» = «foo» -0 «$b» = «bar»] && echo «al menos 1 O0K» ||
echo «ninguno OK» « -0 equivale OR

e ${@:param:num_param} - coge desde <param> el nimero de parametros indicado por <num_param>
o permite acceder a parametros mas allad del 10
o ${@:7:2} - devuelve $7 y $8
o @ indica todos — (se podra indicar otra cosa?)

e recorrer una cadena palabra a palabra:

cadena="Esto es una cadena"
arr=($cadena)
for i in ${arr[@]}; do echo $i; done

cadena="Esto es una cadena"
for i in ${cadenal@]}; do echo $i; done

Operaciones sobre nombres de ficheros:

partiendo de esta cadena: foo=/tmp/mi.directorio/imagen.png

e path ${fo0%/*} - »/tmp/mi.directorio«
e file ${foo##*/} - «imagen.png»
e base = ${file%%.*} - «imagen»
o hint: si la cadena tiene méas de un ».«, usar base=${file%.*}
e ext = ${file#*.} « en este caso, devolveria: «directorio/imagen.png», cogiendo desde el primer
punto que encuenta
o hint: si la cadena tiene mas de un ».«, usar ext=${file##*.}- «png»

Operaciones con cadenas (varios)

e extraer informacién de procesos: ps -L u n | tr -s » « | cut -d » « -f 2,3,14-
o http://stackoverflow.com/questions/15643834/using-bash-ps-and-cut-together

Operaciones con cadenas desde bash

¢ http://www.marqueta.org/cadenas-en-bash/
¢ http://stackoverflow.com/questions/428109/extract-substring-in-bash
e http://rm-rf.es/unix-uso-del-comando-cut/

indirection

usar el valor de una variable para acceder al contenido de otra

declaramos 2 variables
export xyzzy=plugh ; export plugh=cave

echo ${xyzzy} # normal, xyzzy to plugh -> plugh

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

http://stackoverflow.com/questions/15643834/using-bash-ps-and-cut-together
http://www.marqueta.org/cadenas-en-bash/
http://stackoverflow.com/questions/428109/extract-substring-in-bash
http://rm-rf.es/unix-uso-del-comando-cut/

Last update: 06/09/2018 08:27 linux:bash:shellvariables https://miguelangel.torresegea.es/wiki/linux:bash:shellvariables?rev=1536247632

echo ${!xyzzy} # indirection, xyzzy to plugh to cave -> cave

existen 2 casos en el que este comportamiento se ve modificado:

e ${!IN*} : muestra las variables que empiecen por N
e ${!name[@]}

export myVar="hi"
echo ${!my*} # myVar

export ${!/my*}="bye"
echo $myVar # bye

/via: https://stackoverflow.com/questions/8515411/what-is-indirect-expansion-what-does-var-mean

bash shell expansion

comando |descripcion

${var} variable

${!Var} Indirect expansion
${!Var@} [Prefix expansion
${!Var[@]} Array keys expansion
${var[@]} [Plain array expansion

title=indirection

varname=var _one
var one=a-value

echo "${varname}" # var one
echo "${!varname} and ${var_one}" # a-value and a-value

title=prefix

head one=foo
head two=bar

printf '<%s> ' "${'head@}" # <head one> <head two>

printf '<%s> ' "${'head*}" # <head one head two>

nota: las variables estan enganchdas por un espacio, que es el valor por defecto de IFS (espacio, tabulador,
nueva_linea)

title=plain array

Array|[1]=This
Array|2]=is
Array|3
Array[4]=simple
Array|5|=test.

1l
Q

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 07:06

https://stackoverflow.com/questions/8515411/what-is-indirect-expansion-what-does-var-mean
https://miguelangel.torresegea.es/wiki/_export/code/linux:bash:shellvariables?codeblock=4
https://miguelangel.torresegea.es/wiki/_export/code/linux:bash:shellvariables?codeblock=5
https://miguelangel.torresegea.es/wiki/_export/code/linux:bash:shellvariables?codeblock=6

14/02/2026 07:06 5/5 Special Shell Variables & Parameter Substitution and Expansion

printf '<%s> ' "${Array[@]}" # <This> <is> <a> <simple> <test.>

printf '<%s> ' "${Array[*]}" # <This is a simple test.>

title= array associative list

unset Array # erase any notion of variable
array.

declare -A Array # make it associative
Array=([fool=one [bar|=two [baz]|=three # give it values.

printf '<%s> ' "${Array[@]l}" # <two> <three> <one> # List of values.

$ printf '<%s> ' "${!Array[@]}" # <bar> <baz> <foo> # List of keys

$ printf '<%s> ' "${Array[*]}" # <two three one> # One string of list of
values.

$ printf '<%s> ' "${!Array[*]}" # <bar baz foo> # One string of list of keys.

/via: https://unix.stackexchange.com/questions/247589/usage-of-in-parameter-expansion

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/linux:bash:shellvariables?rev=1536247632

Last update: 06/09/2018 08:27

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

https://miguelangel.torresegea.es/wiki/_export/code/linux:bash:shellvariables?codeblock=7
https://unix.stackexchange.com/questions/247589/usage-of-in-parameter-expansion
https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/linux:bash:shellvariables?rev=1536247632

	Special Shell Variables & Parameter Substitution and Expansion
	File descriptors
	Special Shell Variables
	+ variables
	arrays y tablas
	Parameter substitution and Expansion
	Operaciones sobre cadenas
	Operaciones sobre nombres de ficheros:
	Operaciones con cadenas (varios)
	Operaciones con cadenas desde bash
	indirection
	bash shell expansion

