
14/02/2026 07:07 1/5 Special Shell Variables & Parameter Substitution and Expansion

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

Special Shell Variables & Parameter Substitution
and Expansion
linux
bash

$ es utilizado para expansión de parámetros y sustitución de comandos

File descriptors

Special Shell Variables
variable Significado
$0 Nombre del script que se está ejecutando
$1 Parámetro 1
$2 - $9 Parámetros del 2 al 9
${10} Parámetro 10
$# Número de parámetros
«$*» Todos los parámetros en 1 cadena, ha de llevar «
«$@» Todos los parámetros
${#*} Número de parámetros pasados (¿como $#?)
${#@} Número de parámetros pasados (¿como $#?)
$? Valor de retorno
$$ ID de proceso del script (PID)
$- Flags pasados al script
$_ Último argumento del comando anterior
$! PID del último trabajo ejecutado en background

Mirar también: http://wiki.bash-hackers.org/scripting/posparams

Parameter substitution and Expansion
expresión Significado
${variable} valor de variable, lo mismo que $variable
${parametro-valorPorDefecto} si el parámetro no está establecido, se le asigna el de por defecto

${parametro:-valorPorDefecto} si el parámetro no está establecido o es vacío, se le asigna el de por defecto
(sobre variables solo?)

${parametro=valorPorDefecto} si el parámetro no está establecido, se le asigna el de por defecto (no
funciona sobre parametros posicionales -$1,$2…-)

${parametro:=valorPorDefecto} si el parámetro no está establecido o es vacío, se le asigna el de por defecto
(no funciona sobre parametros posicionales -$1,$2…-)

${variable?MensajeError} comprueba si variable no está establecida, mostrando el mensaje de error y
para la ejecución del script

${variable:?MensajeError} comprueba si variable no está establecida o si es vacía, mostrando el mensaje
de error y para la ejecución del script

${variable+OTHER} si el parámetro está establecido, se le asigna OTHER, en otro caso, NULL
${variable:+OTHER} si el parámetro está establecido, se le asigna OTHER, en otro caso, NULL
${!prefijoVariable*} devuelve todas las variables declaradas que empiecen por prefijoVariable

https://miguelangel.torresegea.es/wiki/tag:linux?do=showtag&tag=linux
https://miguelangel.torresegea.es/wiki/tag:bash?do=showtag&tag=bash
http://wiki.bash-hackers.org/scripting/posparams

Last update: 01/10/2024 01:49 linux:bash:shellvariables https://miguelangel.torresegea.es/wiki/linux:bash:shellvariables?rev=1727772582

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 07:07

expresión Significado
${!prefijoVariable@} devuelve todas las variables declaradas que empiecen por prefijoVariable

para manipular, mirar shell expansion pattern matching :
https://www.cyberciti.biz/tips/bash-shell-parameter-substitution-2.html

resumen expansion

/via: http://wiki.bash-hackers.org/syntax/pe?do=
/mas: https://tldp.org/LDP/abs/html/string-manipulation.html

Looking for a specific syntax you saw, without knowing the name?

Simple usage
$PARAMETER
${PARAMETER}

Indirection
${!PARAMETER}

Case modification
${PARAMETER^}
${PARAMETER^^}
${PARAMETER,}
${PARAMETER,,}
${PARAMETER~}
${PARAMETER~~}

Variable name expansion
${!PREFIX*}
${!PREFIX@}

Substring removal (also for filename manipulation!)
${PARAMETER#PATTERN}
${PARAMETER##PATTERN}
${PARAMETER%PATTERN}
${PARAMETER%%PATTERN}

Search and replace
${PARAMETER/PATTERN/STRING}
${PARAMETER//PATTERN/STRING}
${PARAMETER/PATTERN}
${PARAMETER//PATTERN}

String length
${#PARAMETER}

Substring expansion
${PARAMETER:OFFSET}
${PARAMETER:OFFSET:LENGTH}

Use a default value
${PARAMETER:-WORD}
${PARAMETER-WORD}

Assign a default value
${PARAMETER:=WORD}
${PARAMETER=WORD}

Use an alternate value
${PARAMETER:+WORD}
${PARAMETER+WORD}

Display error if null or unset
${PARAMETER:?WORD}
${PARAMETER?WORD}

https://www.cyberciti.biz/tips/bash-shell-parameter-substitution-2.html
http://wiki.bash-hackers.org/syntax/pe?do=
https://tldp.org/LDP/abs/html/string-manipulation.html

14/02/2026 07:07 3/5 Special Shell Variables & Parameter Substitution and Expansion

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

+info: Referencias indirectas

Operaciones sobre cadenas

/vía: http://www.marqueta.org/cadenas-en-bash/

expresión Significado Ejemplo
${#parametro} longitud de parámetro echo ${#string}
${cadena:posición} extrae subcadena desde posición echo ${string:4}

${cadena:posición:longitud} extrae subcadena desde posición la
longitud solicitada

echo ${string:4:7} ; echo
${string::-1}

${cadena#subcadena} eliminar subcadena del principio de la
cadena echo ${string#substring

${cadena%subcadena} eliminar subcadena del final de la
cadena echo ${string%substring

${cadena/s1/s2} reemplazar primera aparicion s1 por s2
${cadena//s1/s2} reemplazar todas aparicion s1 por s2

${cadena/#s1/s2} reemplazar si hay coincidencia al
princpio de cadena

${cadena/%s1/s2} reemplazar si hay coincidencia al final
de cadena

${cadena##*separador} extrae el último elemento de la ristra,
usando separador

data=foo,bar,baz;echo
${data##*,}

$ a=foo; b=bar; [«$a» = «$b»] && echo «iguales» || echo «diferentes» ← espacios
en condición importantes
$ a=foo; b=bar; [«$a» == «$b»] && echo «iguales» || echo «diferentes» ← idem
anterior
$ a=foo; b=bar; [«$a» != «$b»] && echo «diferentes» || echo «iguales»
$ a=foto.jpg ; [["$a" != *.gif]] && echo «no gif» || echo «gif» ← doble corchetes
hacen pattern matching
$ a=foo; b=bar; [«$a» = «foo» -a «$b» = «bar»] && echo «todo OK» || echo
«algo falla» ← -a equivale AND
$ a=foo; b=bar; [«$a» = «foo» -o «$b» = «bar»] && echo «al menos 1 OK» ||
echo «ninguno OK» ← -o equivale OR

${@:param:num_param} → coge desde <param> el número de parámetros indicado por <num_param>
permite acceder a parámetros más allá del 10
${@:7:2} → devuelve $7 y $8
@ indica todos → (se podrá indicar otra cosa?)

recorrer una cadena palabra a palabra:

cadena="Esto es una cadena"
arr=($cadena)
for i in ${arr[@]}; do echo $i; done

cadena="Esto es una cadena"
for i in ${cadena[@]}; do echo $i; done

subcadena en cadena : $string =~ $substring

https://miguelangel.torresegea.es/wiki/linux:bash:indirectreferences
http://www.marqueta.org/cadenas-en-bash/
https://miguelangel.torresegea.es/wiki/linux:bash:string_substring

Last update: 01/10/2024 01:49 linux:bash:shellvariables https://miguelangel.torresegea.es/wiki/linux:bash:shellvariables?rev=1727772582

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 07:07

Operaciones sobre nombres de ficheros:

partiendo de esta cadena: foo=/tmp/mi.directorio/imagen.png

path = ${foo%/*} → »/tmp/mi.directorio«
file = ${foo##*/} → «imagen.png»
base = ${file%%.*} → «imagen»

hint: si la cadena tiene más de un ».«, usar base=${file%.*}
ext = ${file#*.} ← en este caso, devolvería: «directorio/imagen.png», cogiendo desde el primer
punto que encuenta

hint: si la cadena tiene más de un ».«, usar ext=${file##*.}→ «png»

Operaciones con cadenas (varios)

extraer información de procesos: ps -L u n | tr -s » « | cut -d » « -f 2,3,14-
http://stackoverflow.com/questions/15643834/using-bash-ps-and-cut-together

Operaciones con cadenas desde bash

http://www.marqueta.org/cadenas-en-bash/
http://stackoverflow.com/questions/428109/extract-substring-in-bash
http://rm-rf.es/unix-uso-del-comando-cut/

bash shell expansion
comando descripción
${var} variable
${!var} Indirect expansion
${!var@} Prefix expansion
${!var[@]} Array keys expansion
${var[@]} Plain array expansion

title=indirection

varname=var_one
var_one=a-value

echo "${varname}" # var_one
echo "${var_one}" # a-value
echo "${!varname}" # a-value

title=prefix

head_one=foo
head_two=bar

printf '<%s> ' "${!head@}" # <head_one> <head_two>

http://stackoverflow.com/questions/15643834/using-bash-ps-and-cut-together
http://www.marqueta.org/cadenas-en-bash/
http://stackoverflow.com/questions/428109/extract-substring-in-bash
http://rm-rf.es/unix-uso-del-comando-cut/
https://miguelangel.torresegea.es/wiki/_export/code/linux:bash:shellvariables?codeblock=2
https://miguelangel.torresegea.es/wiki/_export/code/linux:bash:shellvariables?codeblock=3

14/02/2026 07:07 5/5 Special Shell Variables & Parameter Substitution and Expansion

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

printf '<%s> ' "${!head*}" # <head_one head_two>

nota: las variables están enganchdas por un espacio, que es el valor por defecto de IFS (espacio, tabulador,
nueva_linea)

title=plain array

Array[1]=This
Array[2]=is
Array[3]=a
Array[4]=simple
Array[5]=test.

printf '<%s> ' "${Array[@]}" # <This> <is> <a> <simple> <test.>

printf '<%s> ' "${Array[*]}" # <This is a simple test.>

title= array associative list

unset Array # erase any notion of variable
array.
declare -A Array # make it associative

Array=([foo]=one [bar]=two [baz]=three) # give it values.

printf '<%s> ' "${Array[@]}" # <two> <three> <one> # List of values.

$ printf '<%s> ' "${!Array[@]}" # <bar> <baz> <foo> # List of keys

$ printf '<%s> ' "${Array[*]}" # <two three one> # One string of list of
values.

$ printf '<%s> ' "${!Array[*]}" # <bar baz foo> # One string of list of keys.

/vía: https://unix.stackexchange.com/questions/247589/usage-of-in-parameter-expansion

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/linux:bash:shellvariables?rev=1727772582

Last update: 01/10/2024 01:49

https://miguelangel.torresegea.es/wiki/_export/code/linux:bash:shellvariables?codeblock=4
https://miguelangel.torresegea.es/wiki/_export/code/linux:bash:shellvariables?codeblock=5
https://unix.stackexchange.com/questions/247589/usage-of-in-parameter-expansion
https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/linux:bash:shellvariables?rev=1727772582

	Special Shell Variables & Parameter Substitution and Expansion
	File descriptors
	Special Shell Variables
	Parameter substitution and Expansion
	resumen expansion

	Operaciones sobre cadenas
	Operaciones sobre nombres de ficheros:
	Operaciones con cadenas (varios)
	Operaciones con cadenas desde bash
	bash shell expansion

