
14/02/2026 06:48 1/7 docker (first contact)

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

docker

un poco de historia

docker monta un sistema de containerización que permite lanzar nuevas instancias de S.O.
aprovechando los recursos (hard) de la máquina Y el kernel del SO ya corriendo, lo que hace más óptimo
el aprovechamiendo de recursos que las máquinas virtuales (que recrean un ordenador al completo, con
sus propios kernels y sistemas de ficheros)
Se basa en la tecnología LXC (LinuX Containers) presente en el kernel desde la versión 3.8
Grandes beneficios:

portabilidad de aplicaciones
aislamiento de procesos
prevenir la fragilidad del exterior
manejo de recursos

Partes de funcionamiento de Docker:
docker daemon
docker CLI
docker image index

Elementos de Docker:
contenedores
imágenes
dockerfiles

enlaces de interés

docs docker:
https://docs.docker.com/engine/tutorials/dockerizing/1.
https://docs.docker.com/engine/tutorials/usingdocker/2.
https://docs.docker.com/engine/tutorials/dockerimages/3.
https://docs.docker.com/engine/tutorials/networkingcontainers/4.
https://docs.docker.com/engine/tutorials/dockervolumes/5.

otros enlaces de la red (básicos)
http://www.muylinux.com/2016/04/19/tutorial-docker
https://www.adictosaltrabajo.com/tutoriales/docker-for-dummies/
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-getting-started
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-16-04

más enlaces (más avanzados)
https://www.digitalocean.com/community/tutorials/docker-explicado-como-crear-contenedores-de-
docker-corriendo-en-memcached-es

instalación

Asegurarse que disponemos de https y certificados en APT:1.

$ sudo apt-get install apt-transport-https ca-certificates

Añadir clave GPG de los repositorios DOCKER:2.

$ sudo apt-key adv --keyserver hkp://p80.pool.sks-keyservers.net:80 --recv-

https://docs.docker.com/engine/tutorials/dockerizing/
https://docs.docker.com/engine/tutorials/usingdocker/
https://docs.docker.com/engine/tutorials/dockerimages/
https://docs.docker.com/engine/tutorials/networkingcontainers/
https://docs.docker.com/engine/tutorials/dockervolumes/
http://www.muylinux.com/2016/04/19/tutorial-docker
https://www.adictosaltrabajo.com/tutoriales/docker-for-dummies/
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-getting-started
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-ubuntu-16-04
https://www.digitalocean.com/community/tutorials/docker-explicado-como-crear-contenedores-de-docker-corriendo-en-memcached-es
https://www.digitalocean.com/community/tutorials/docker-explicado-como-crear-contenedores-de-docker-corriendo-en-memcached-es

Last update: 19/10/2016 17:08 linux:docker:start https://miguelangel.torresegea.es/wiki/linux:docker:start?rev=1476922083

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 06:48

keys 58118E89F3A912897C070ADBF76221572C52609D

Añadir un nuevo repositorio en /etc/apt/sources.list.d/docker.list:3.

deb https://apt.dockerproject.org/repo ubuntu-xenial main

Actualizar información respositorios, instalar:4.

$ sudo apt-get update ; sudo apt-get install docker.io

Añadir nuestro usuario al grupo de DOCKER para poder trabajar sin SUDO:5.

$ sudo usermod -a -G docker $USER

Refrescamos el grupo para poder trabajar sin cerrar sesión (este comando hace de docker nuestro grupo6.
principal durante la sesión):

$ newgrp docker

imágenes

Las imágenes son las plantillas a partir de las cuales creamos los contenedores de trabajo (como instanciar el
objeto de una clase en OOP)

existe en https://www.docker.com/ un repositorio de imágenes para descargar, tanto oficiales de distros como
de usuarios.

para buscar imágenes disponibles en contenedores:

$ docker search <cadena>

para descargar una imagen:

$ docker pull <nombre_imagen>

para ver las imágenes descargadas:

$ docker images

para borrar una imagen:

$ docker rmi <nombre_imagen>

añadir tag a imagen (crea copia de la imagen):

$ docker tag <nombre_imagen> <usuario>/<nombre_imagen>:<tag>

Pendiente:

$ docker images --digest | head

https://www.docker.com/

14/02/2026 06:48 3/7 docker (first contact)

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

contenedores

El contenedor (en el principio de su existencia) coge la referencia de una imagen y se crea.

Se pueden crear tantos contenedores de la misma imagen como se precisen

mantenimiento (de contenedores)

listar todos los contenedores existentes:

$ docker ps -a

listar todos los contenedores activos:

$ docker ps

listar los últimos contenedores creados:

$ docker ps -l

parar un contenedor:

$ docker stop <nombre_contenedor>

borrar un contenedor (no ha de estar en funcionamiento):

$ docker rm <nombre_contenedor>

convertir un contenedor en imagen:

$ docker commit -m "<comentario>" -a "<autor>" <id_contenedor>
<repositorio>:<nombre_imagen>

el nombre del contenedor puede ser su CONTAINER_ID o si NAME (según aparece en el listado generado con el
comando correspondiente)

ejecución

crear (si no existe) y ejecutar en modo interactivo (i) con pseudoterminal (t):

$ docker run -it <nombre_contenedor>

ejecutar en modo interactivo, borrar al salir:

$ docker run -it --rm <nombre_contenedor>

poner en marcha un contenedor:

$ docker start <nombre_contenedor>

poner en marcha contenedor como demonio (-d), mapeo de puerto y ejecución de comando:

$ docker run -d <nombre_imagen> -p <puerto_local>:<puerto_docker> <comando>

poner en marcha contenedor con nombre propio:

Last update: 19/10/2016 17:08 linux:docker:start https://miguelangel.torresegea.es/wiki/linux:docker:start?rev=1476922083

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 06:48

$ docker run -d <nombre_imagen> --name <nombre_propio_contenedor>

poner en marcha contenedor mapeando los puertos aleatoriamente (se consulta en $ docker ps:

$ docker run -d -P <nombre_imagen>

acceder a un contenedor en marcha:

$ docker attach <nombre_contenedor>

salir de un contenedor (detach), haciendo que continue funcionando: CONTROL+P + CONTROL+Q
abrir un terminal en un contenedor:

$ docker exec -it <nombre_contenedor> bash

funcionamiento

mostrar la salida (STDOUT) de un contenedor, con watch (estilo tail -f:

$ docker -f logs <nombre_contenedor>

mostrar procesos de un contenedor:

$ docker top <nombre_contenedor>

información del contenedor en formato JSON:

$ docker inspect <nombre_contenedor>

recoger una clave del JSON:

$ docker inspect -f '<clave JSON>' <nombre_contenedor>

networking

Por defecto, el motor de docker crea una serie de redes para trabajar con los contenedores:

host
bridge

Aunque permite crear propias y añadir contenedores a ellas para que se hablen de manera aislada

mostrar redes de docker:

$ docker network ls

inspeccionar red:

$ docker network inspect <red>

desconectar contenedor de una red:

$ docker network disconnect <red> <nombre_contenedor>

mapear puerto del contenedor, devuelve puerto de máquina local:

14/02/2026 06:48 5/7 docker (first contact)

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

$ docker port <nombre_contenedor> <puerto>

crear red propia (tipo bridge, flag -d):

docker network create -d bridge <nombre_red>

ejecutar contenedor con una red propia:

$ docker run -d --network=<nombre_red> <nombre_imagen>

añadir contenedor en marcha a una red propia:

$ docker network connect <nombre_red> <nombre_contenedor>

averiguar IP de contenedor:

docker inspect --format='{{range
.NetworkSettings.Networks}}{{.IPAddress}}{{end}}' <nombre_contenedor>

Data Volumes

es un directorio especificado trabajando en UFS1) que:

los Volumenes se inicializan al crear el contenedor. Si existe información en el punto de montaje, esta se
copiará al Volumen
los Volumenes se puede compartir y reusar entre contenedores
los cambios se aplican directamente en los Volumenes
los cambios en los Volumenes no se aplican cuando se actualiza una imagen
los Volumenes no son destruidos al destruir el contenedor que los usa
se puede acceder a los volúmenes creados en: /var/lib/docker/volumes

añadir un Volumen anónimo a un contenedor «al vuelo»:

$ docker run -d -P --name web -v /webapp training/webapp

añadir un Volumen anónimo a un contenedor «al vuelo» y borrar todo al salir:

$ docker run -d -rm --name web -v /webapp training/webapp

crear un Volumen para su posterior uso:

$ docker volume create -d <plugin> -o size=20GB --name <nombre_volumen>

«flocker» es un plugin de Volumen que provee de multi-hosts
lista de plugins para la creación de Volumenes

añadir Volumen existente a contenedor:

$ docker run -d -P -v <nombre_volumen>:/<path_contenedor>

añadir un directorio local en un contenedor, con opción de solo-lectura (ro):

$ docker run -d -P --name web -v <path_local>:<path_contenedor>[:ro]
training/webapp python app.py

añadir fichero local en contenedor:

$ docker run --rm -it -v ~/.bash_history:/root/.bash_history <nombre_imagen>

https://docs.docker.com/engine/extend/legacy_plugins/#/volume-plugins

Last update: 19/10/2016 17:08 linux:docker:start https://miguelangel.torresegea.es/wiki/linux:docker:start?rev=1476922083

https://miguelangel.torresegea.es/wiki/ Printed on 14/02/2026 06:48

<comando>

crear Volumen usando contenedor y compartir entre varios contenedores. El directorio será /dbdata. Se
pueden añadir varios –volumes. Permite contatenar entre los diferentes contenedores (db3):

$ docker create -v /dbdata --name dbstore training/postgres /bin/true
$ docker run -d --volumes-from dbstore --name db1 training/postgress
$ docker run -d --volumes-from dbstore --name db2 training/postgress
$ docker run -d --volumens-from db1 --name db3 training/postgress

backup de Volumenes (en host local). Crea un .tar del Volumen /dbdata en el directorio loca en curso.
Destruye todo al finalizar:

$ docker run --rm --volumes-from dbstore -v $(pwd):/backup ubuntu tar cvf
/backup/backup.tar /dbdata

restore de tar:

$ docker run -v /dbdata --name dbstore2 ubuntu /bin/bash
$ docker run --rm --volumes-from dbstore2 -v $(pwd):/backup ubuntu bash -c "cd
/dbdata && tar xvf /backup/backup.tar --strip 1"

mostrar Volumenes:

$ docker volume ls

mostrar Volumenes clgados (huérfanos):

$ docker volume ls -f dangling=true

borrar volúmenes:

$ docker volume rm <nombre_volumen>
 * borrar Volumenes con el borrado del contenedor:<code bash>$ docker rm -v
<nombre_contenedor>

Pendiente:

Volume labels

otros comandos

$ docker version

$ docker info

dockerfiles

los «dockerfiles» son ficheros de procesamiento que le dicen a docker como construir una nueva imagen de
manera «desatendida»

formato del dockerfile:

FROM ubuntu

14/02/2026 06:48 7/7 docker (first contact)

miguel angel torres egea - https://miguelangel.torresegea.es/wiki/

MAINTAINER <autor>
ENV http_proxy http://user:pass@proxy/
ENV https_proxy http://user:pass@proxy/
RUN apt-get update
RUN apt-get install apache2 -y
RUN echo "<h1>Apache with Docker</h1>" > /var/www/html/index.html
EXPOSE 80
ENTRYPOINT apache2ctl -D FOREGROUND

FROM: imagen base1.
MAINTAINER: autor de la imagen2.
ENV: variables de entorno en la imagen base3.
RUN: ejecuta una sentencia en la imagen base4.
EXPOSE: abrimos el puerto especificado en el contenedor para que se pueda mapear desde el anfitrion5.
ENTRYPOINT: que se debe ejecutar cada vez que se ejecute el contenedor6.

$ docker build -t <autor>/<imagen> <path_fichero_docker>

repositorio de imágenes

para subir una imagen a los repositorios públicos (Docker Hub)

autentificación con docker.com:

$ docker login -u <usuario>

subir imagen a repositorio:

$ docker push <usuario>/<nombre_imagen>

1)

Union File System - https://docs.docker.com/engine/reference/glossary/#union-file-system

From:
https://miguelangel.torresegea.es/wiki/ - miguel angel torres egea

Permanent link:
https://miguelangel.torresegea.es/wiki/linux:docker:start?rev=1476922083

Last update: 19/10/2016 17:08

https://docs.docker.com/engine/reference/glossary/#union-file-system
https://miguelangel.torresegea.es/wiki/
https://miguelangel.torresegea.es/wiki/linux:docker:start?rev=1476922083

	docker
	un poco de historia
	enlaces de interés
	instalación
	imágenes
	contenedores
	mantenimiento (de contenedores)
	ejecución
	funcionamiento
	networking
	Data Volumes

	otros comandos
	dockerfiles
	repositorio de imágenes

